Preparation	Canonical	proofs	terminal	proofs	Large volume
000000	০০০০০০০০০০০০০	0000000	0000	00	

Fano varieties with extreme behavior

Chengxi Wang UCLA

Nov. 2023

<ロ>×ロ>×個>×目>×目> 目 のへで

Preparation	Canonical	proofs	terminal	proofs	Large volume
●00000	০০০০০০০০০০০০০০	0000000	0000	oo	

- A normal projective variety X is Fano if the anti-canonical divisor -K_X is ample.
- The Fano index of X is:

(日) (理) (ヨ) (ヨ) (ヨ) ()

Kobayashi and Ochial: \mathbb{P}^n has the biggest Fano index n + 1 among all smooth Fano varieties. $-K_{\mathbb{P}^n} = (n+1)\mathcal{O}(1)$

 Q-Fano variety: Fano variety only terminal Q-factorial singularities: Picard number is one

Preparation	Canonical	proofs	terminal	proofs	Large volume
○ooooo	000000000000	0000000	0000	00	

- A normal projective variety X is Fano if the anti-canonical divisor -K_X is ample.
- The Fano index of X is:

< ロ > < 同 > < 三 > < 三 > 、 三 > へ 回 > 、 ○ へ ○ >

Kobayashi and Ochial: \mathbb{P}^n has the biggest Fano index n + 1 among all smooth Fano varieties. $-K_{\mathbb{P}^n} = (n+1)\mathcal{O}(1)$

 Q-Fano variety: Fano variety only terminal Q-factorial singularities; Picard number is one

Preparation	Canonical	proofs	terminal	proofs	Large volume
○ooooo	000000000000	0000000	0000	00	

- A normal projective variety X is Fano if the anti-canonical divisor -K_X is ample.
- The Fano index of X is:

< ロ > < 同 > < 三 > < 三 > 、 三 > へ 回 > 、 ○ へ ○ >

Kobayashi and Ochial: \mathbb{P}^n has the biggest Fano index n + 1 among all smooth Fano varieties. $-K_{\mathbb{P}^n} = (n+1)\mathcal{O}(1)$

 Q-Fano variety: Fano variety only terminal Q-factorial singularities; Picard number is one

Preparation	Canonical	proofs	terminal	proofs	Large volume
○ooooo	000000000000	0000000	0000	oo	

- A normal projective variety X is Fano if the anti-canonical divisor -K_X is ample.
- The Fano index of X is:

< ロ > < 同 > < 三 > < 三 > 、 三 > へ 回 > 、 ○ へ ○ >

Kobayashi and Ochial: \mathbb{P}^n has the biggest Fano index n + 1 among all smooth Fano varieties. $-K_{\mathbb{P}^n} = (n+1)\mathcal{O}(1)$

Q-Fano variety:

Fano variety only terminal Q–factorial singularities; Picard number is one

Preparation	Canonical	proofs	terminal	proofs	Large volume
○ooooo	000000000000	0000000	0000	oo	

- A normal projective variety X is Fano if the anti-canonical divisor -K_X is ample.
- The Fano index of X is:

< ロ > < 同 > < 三 > < 三 > 、 三 > へ 回 > 、 ○ へ ○ >

Kobayashi and Ochial: \mathbb{P}^n has the biggest Fano index n + 1 among all smooth Fano varieties. $-K_{\mathbb{P}^n} = (n+1)\mathcal{O}(1)$

 Q-Fano variety: Fano variety only terminal Q-factorial singularities; Picard number is one

Preparation	Canonical	proofs	terminal	proofs	Large volume
○ooooo	000000000000	0000000	0000	oo	

- A normal projective variety X is Fano if the anti-canonical divisor -K_X is ample.
- The Fano index of X is:

< ロ > < 同 > < 三 > < 三 > 、 三 > へ 回 > 、 ○ へ ○ >

Kobayashi and Ochial: \mathbb{P}^n has the biggest Fano index n + 1 among all smooth Fano varieties. $-K_{\mathbb{P}^n} = (n+1)\mathcal{O}(1)$

 Q-Fano variety: Fano variety only terminal Q-factorial singularities;

Picard number is one

Preparation	Canonical	proofs	terminal	proofs	Large volume
○ooooo	000000000000	0000000	0000	oo	

- A normal projective variety X is Fano if the anti-canonical divisor -K_X is ample.
- The Fano index of X is:

< ロ > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Kobayashi and Ochial: \mathbb{P}^n has the biggest Fano index n + 1 among all smooth Fano varieties. $-K_{\mathbb{P}^n} = (n+1)\mathcal{O}(1)$

 Q-Fano variety: Fano variety only terminal Q-factorial singularities; Picard number is one

Preparation	Canonical	proofs	terminal	proofs	Large volume
o●oooo	000000000000	0000000	0000	00	
example	S				

- the Fano index belongs to {1,...,11,13,17,19}.
- FI(X) = 19 \iff X $\simeq \mathbb{P}^3(7, 5, 4, 3);$ - $K_X = \mathcal{O}(7 + 5 + 4 + 3) = \mathcal{O}(19)$ and $\mathcal{O}(1)$ is Weil divisor

• FI(X) = 17 \iff X $\simeq \mathbb{P}^3(7,5,3,2)$ -K_X = $\mathcal{O}(7+5+3+2) = \mathcal{O}(17)$

Preparation	Canonical	proofs	terminal	proofs	Large volume
o●oooo	000000000000	0000000	0000	00	
example	S				

- the Fano index belongs to {1,...,11,13,17,19}.
- FI(X) = 19 $\iff X \simeq \mathbb{P}^3(7, 5, 4, 3);$ $-K_X = \mathcal{O}(7+5+4+3) = \mathcal{O}(19) \text{ and } \mathcal{O}(1) \text{ is Weil divisor.}$ • FI(X) = 17 $\iff X \simeq \mathbb{P}^3(7, 5, 3, 2)$ $-K_X = \mathcal{O}(7+5+3+2) = \mathcal{O}(17).$

Preparation	Canonical	proofs	terminal	proofs	Large volume
000000	000000000000	0000000	0000	00	
example	S				

- the Fano index belongs to {1,...,11,13,17,19}.
- $\operatorname{FI}(X) = 19 \iff X \simeq \mathbb{P}^3(7, 5, 4, 3);$

 $-K_X = \mathcal{O}(7+5+4+3) = \mathcal{O}(19) \text{ and } \mathcal{O}(1) \text{ is Weil divisor.}$ • FI(X) = 17 $\iff X \simeq \mathbb{P}^3(7,5,3,2)$ $K_X = \mathcal{O}(7+5+3+2) = \mathcal{O}(17)$

<ロ> <用> <用> < 三> < 三> < 三) のQ()

 $-K_X = O(7 + 5 + 3 + 2) = O(17).$

Preparation	Canonical	proofs	terminal	proofs	Large volume
o●oooo	000000000000	0000000	0000	00	
example	s				

• the Fano index belongs to {1,...,11,13,17,19}.

• FI(X) = 19
$$\iff$$
 X $\simeq \mathbb{P}^3(7, 5, 4, 3);$
-K_X = $\mathcal{O}(7+5+4+3) = \mathcal{O}(19)$ and $\mathcal{O}(1)$ is Weil divisor.

< ロ > < 同 > < 三 > < 三 > 、 三 > へ 回 > 、 ○ へ ○ >

• FI(X) = 17 \iff X $\simeq \mathbb{P}^3(7,5,3,2)$ -K_X = $\mathcal{O}(7+5+3+2) = \mathcal{O}(17).$

Preparation 000000	Canonical	proofs 0000000	terminal 0000	proofs 00	Large volume
examples	5				

Ľ

• the Fano index belongs to $\{1, ..., 11, 13, 17, 19\}$.

• FI(X) = 19
$$\iff$$
 X $\simeq \mathbb{P}^3(7, 5, 4, 3);$
-K_X = $\mathcal{O}(7+5+4+3) = \mathcal{O}(19)$ and $\mathcal{O}(1)$ is Weil divisor.

メロシス 理シス ヨシス ヨシー ヨー ろくぐ

• FI(X) = 17
$$\iff$$
 X $\simeq \mathbb{P}^3(7,5,3,2)$
-K_X = $\mathcal{O}(7+5+3+2) = \mathcal{O}(17)$

Preparation	Canonical	proofs	terminal	proofs	Large volume
o●oooo	০০০০০০০০০০০০০০০	0000000	0000	00	
examples	S				

Ľ

• the Fano index belongs to $\{1, ..., 11, 13, 17, 19\}$.

•
$$\operatorname{FI}(X) = 19 \iff X \simeq \mathbb{P}^3(7, 5, 4, 3);$$

 $-K_X = \mathcal{O}(7+5+4+3) = \mathcal{O}(19) \text{ and } \mathcal{O}(1) \text{ is Weil divisor.}$

メロシス 理シス ヨシス ヨシー ヨー ろくぐ

• FI(X) = 17
$$\iff$$
 X $\simeq \mathbb{P}^3(7,5,3,2)$
-K_X = $\mathcal{O}(7+5+3+2) = \mathcal{O}(17).$

 Preparation
 Canonical
 proofs
 terminal
 proofs
 Large volume

 000000
 0000000000
 0000000
 000000
 000000
 000000

Weighted Projective Spaces

• For
$$a_0, \ldots, a_N \in \mathbb{Z}_{>0}$$
,

the WPS $X = \mathbb{P}^{N}(a_{0}, ..., a_{N})$ is the quotient variety $(\mathbb{A}^{N+1} \setminus 0)/\mathbb{G}_{m}$, where the multiplicative group \mathbb{G}_{m} acts by $t(x_{0}, ..., x_{N}) = (t^{a_{0}}x_{0}, ..., t^{a_{N}}x_{N}).$

• WPS X is called *well-formed* \iff analogous quotient stack $[(A^{n+1} - 0)/\mathbb{G}_m]$ has trivial stabilizer group in codimension 1. $\iff \gcd(a_0, \dots, \widehat{a_i}, \dots, a_n) = 1$ for each *i*.

Weighted Projective Spaces

- For $a_0, \ldots, a_N \in \mathbb{Z}_{>0}$, the WPS $X = \mathbb{P}^N(a_0, \ldots, a_N)$ is the quotient variety $(\mathbb{A}^{N+1} \setminus 0)/\mathbb{G}_m$, where the multiplicative group \mathbb{G}_m acts by $t(x_0, \ldots, x_N) = (t^{a_0}x_0, \ldots, t^{a_N}x_N)$.
- WPS X is called *well-formed* \iff analogous quotient stack $[(A^{n+1} - 0)/\mathbb{G}_m]$ has trivial stabilizer group in codimension 1. \iff $gcd(a_0, \dots, \hat{a}_i, \dots, a_n) = 1$ for each *i*.

イロト 不得 トイヨト イヨト ヨー のへで

Weighted Projective Spaces

- For $a_0, \ldots, a_N \in \mathbb{Z}_{>0}$, the WPS $X = \mathbb{P}^N(a_0, \ldots, a_N)$ is the quotient variety $(\mathbb{A}^{N+1} \setminus 0)/\mathbb{G}_m$, where the multiplicative group \mathbb{G}_m acts by $t(x_0, \ldots, x_N) = (t^{a_0}x_0, \ldots, t^{a_N}x_N)$.
- WPS X is called well-formed

 $\iff \text{analogous quotient stack } [(A^{n+1} - 0)/\mathbb{G}_m] \text{ has trivial stabilizer group in codimension 1.}$ $\iff \gcd(a_0, \dots, \widehat{a}_i, \dots, a_n) = 1 \text{ for each } i.$

イロト 不得 トイヨト イヨト ヨー のへで

 Preparation
 Canonical
 proofs
 terminal
 proofs
 Large volume

 000000
 00000000000
 0000000
 000000
 000
 000000

Weighted Projective Spaces

- For $a_0, \ldots, a_N \in \mathbb{Z}_{>0}$, the WPS $X = \mathbb{P}^N(a_0, \ldots, a_N)$ is the quotient variety $(\mathbb{A}^{N+1} \setminus 0)/\mathbb{G}_m$, where the multiplicative group \mathbb{G}_m acts by $t(x_0, \ldots, x_N) = (t^{a_0}x_0, \ldots, t^{a_N}x_N)$.
- WPS X is called *well-formed*

 \iff analogous quotient stack $[(A^{n+1} - 0)/\mathbb{G}_m]$ has trivial stabilizer group in codimension 1.

 $\Longleftrightarrow \mathsf{gcd}(a_0,\ldots,\widehat{a_i},\ldots,a_n) = 1$ for each i.

 Preparation
 Canonical
 proofs
 terminal
 proofs
 Large volume

 000000
 0000000000
 0000000
 000000
 000
 000000

Weighted Projective Spaces

- For $a_0, \ldots, a_N \in \mathbb{Z}_{>0}$, the WPS $X = \mathbb{P}^N(a_0, \ldots, a_N)$ is the quotient variety $(\mathbb{A}^{N+1} \setminus 0)/\mathbb{G}_m$, where the multiplicative group \mathbb{G}_m acts by $t(x_0, \ldots, x_N) = (t^{a_0}x_0, \ldots, t^{a_N}x_N)$.
- WPS X is called *well-formed* ⇔ analogous quotient stack [(Aⁿ⁺¹ 0)/𝔅_m] has trivial stabilizer group in codimension 1.
 ⇔ gcd(2, -2) = 1 for each i

<ロ> <用> <用> < 三> < 三> < 三) のQ()

 \iff gcd $(a_0,\ldots,\widehat{a}_i,\ldots,a_n)=1$ for each i.

Preparation	Canonical	proofs	terminal	proofs	Large volume
000000	ooooooooooooo	0000000	0000	00	
well-for	med WPS				

- $\mathcal{O}(c)$: the sheaf associated to a Weil divisor on X for an integer c.
- $\mathcal{O}(c)$ is a line bundle \iff every weight a_i is a factor of c.
- the canonical divisor $K_X = \mathcal{O}(-a_0 \cdots a_N)$.
- a Weil divisor is ample if some positive multiple of it is an ample Cartier divisor.

< ロ > < 同 > < 三 > < 三 > 、 三 > へ 回 > 、 ○ へ ○ >

• the ample Weil divisor $\mathcal{O}(1)$ has volume $\frac{1}{a_0 \cdots a_N}$.

Preparation	Canonical	proofs	terminal	proofs	Large volume
000000	000000000000	0000000	0000	00	
well-form	med WPS				

- \$\mathcal{O}(c)\$: the sheaf associated to a Weil divisor on \$X\$ for an integer \$c\$.
- $\mathcal{O}(c)$ is a line bundle \iff every weight a_i is a factor of c.
- the canonical divisor $K_X = \mathcal{O}(-a_0 \cdots a_N)$.
- a Weil divisor is ample if some positive multiple of it is an ample Cartier divisor.

< ロ > < 同 > < 三 > < 三 > 、 三 > へ 回 > 、 ○ へ ○ >

• the ample Weil divisor $\mathcal{O}(1)$ has volume $\frac{1}{a_0 \cdots a_N}$.

Preparation	Canonical	proofs	terminal	proofs	Large volume
ooo●oo	ooooooooooooo	0000000	0000	00	
well-for	med WPS				

- \$\mathcal{O}(c)\$: the sheaf associated to a Weil divisor on \$X\$ for an integer \$c\$.
- $\mathcal{O}(c)$ is a line bundle \iff every weight a_i is a factor of c.
- the canonical divisor $K_X = \mathcal{O}(-a_0 \cdots a_N)$.
- a Weil divisor is ample if some positive multiple of it is an ample Cartier divisor.

< ロ > < 同 > < 三 > < 三 > 、 三 > へ 回 > 、 ○ へ ○ >

• the ample Weil divisor $\mathcal{O}(1)$ has volume $\frac{1}{a_0\cdots a_N}$.

Preparation	Canonical	proofs	terminal	proofs	Large volume
000000	ooooooooooooo	0000000	0000	00	
well-for	med WPS				

- \$\mathcal{O}(c)\$: the sheaf associated to a Weil divisor on \$X\$ for an integer \$c\$.
- $\mathcal{O}(c)$ is a line bundle \iff every weight a_i is a factor of c.
- the canonical divisor $K_X = \mathcal{O}(-a_0 \cdots a_N)$.
- a Weil divisor is ample if some positive multiple of it is an ample Cartier divisor.

< ロ > < 同 > < 三 > < 三 > 、 三 > へ 回 > 、 ○ へ ○ >

• the ample Weil divisor $\mathcal{O}(1)$ has volume $\frac{1}{a_0 \cdots a_N}$.

Preparation	Canonical	proofs	terminal	proofs	Large volume
000000	ooooooooooooo	0000000	0000	00	
well-for	med WPS				

- \$\mathcal{O}(c)\$: the sheaf associated to a Weil divisor on \$X\$ for an integer \$c\$.
- $\mathcal{O}(c)$ is a line bundle \iff every weight a_i is a factor of c.
- the canonical divisor $K_X = \mathcal{O}(-a_0 \cdots a_N)$.
- a Weil divisor is ample if some positive multiple of it is an ample Cartier divisor.

< ロ > < 同 > < 三 > < 三 > 、 三 > へ 回 > 、 ○ へ ○ >

• the ample Weil divisor $\mathcal{O}(1)$ has volume $\frac{1}{a_0 \cdots a_N}$.

Preparation	Canonical	proofs	terminal	proofs	Large volume
ooooooo	000000000000	0000000	0000	00	

Theorem

- The group of rth roots of unity μ_r acts on affine space A^s by ζ(t₁,..., t_s) = (ζ^{b₁}t₁,...,ζ^{b_s}t_s).
- Quotient \mathbb{A}^{s}/μ_{r} is a cyclic quotient singularity of type $\frac{1}{r}(b_{1},\ldots,b_{s})$.
- Assume that gcd(r, b₁,..., b_i,..., b_s) = 1 for all i = 1,...,s (this description is well-formed). Then the quotient singularity is canonical (resp. terminal)

$$\iff \sum_{k=1}^{s} tb_k \bmod r \ge r$$

Preparation	Canonical	proofs	terminal	proofs	Large volume
ooooooo	০০০০০০০০০০০০০০	0000000	0000	00	

Theorem

- The group of rth roots of unity μ_r acts on affine space A^s by ζ(t₁,..., t_s) = (ζ^{b₁}t₁,...,ζ^{b_s}t_s).
- Quotient \mathbb{A}^s/μ_r is a cyclic quotient singularity of type $\frac{1}{r}(b_1,\ldots,b_s)$.
- Assume that gcd(r, b₁,..., b_i,..., b_s) = 1 for all i = 1,..., s (this description is well-formed). Then the quotient singularity is canonical (resp. terminal)

$$\iff \sum_{k=1}^{s} tb_k \bmod r \ge r$$

Preparation	Canonical	proofs	terminal	proofs	Large volume
ooooooo	০০০০০০০০০০০০০০	0000000	0000	00	

Theorem

- The group of rth roots of unity μ_r acts on affine space A^s by ζ(t₁,..., t_s) = (ζ^{b₁}t₁,...,ζ^{b_s}t_s).
- Quotient \mathbb{A}^{s}/μ_{r} is a cyclic quotient singularity of type $\frac{1}{r}(b_{1},\ldots,b_{s})$.
- Assume that gcd(r, b₁,..., b_i,..., b_s) = 1 for all i = 1,...,s (this description is well-formed).

Then the quotient singularity is canonical (resp. terminal)

$$\iff \sum_{k=1}^{s} tb_k \bmod r \ge r$$

Preparation ooooooo	Canonical	proofs 0000000	terminal 0000	proofs 00	Large volume

Theorem

- The group of rth roots of unity μ_r acts on affine space A^s by ζ(t₁,..., t_s) = (ζ^{b₁}t₁,...,ζ^{b_s}t_s).
- Quotient \mathbb{A}^{s}/μ_{r} is a cyclic quotient singularity of type $\frac{1}{r}(b_{1},\ldots,b_{s})$.
- Assume that gcd(r, b₁,..., b_i,..., b_s) = 1 for all i = 1,..., s (this description is well-formed). Then the quotient singularity is canonical (resp. terminal)

$$\iff \sum_{k=1}^{s} tb_k \mod r \ge r$$

	Canonical	proofs	terminal	proofs	Large volume
000000					

$$s_0 = 2$$
, and $s_n = s_{n-1}(s_{n-1} - 1) + 1$ for $n \ge 1$.
First few terms: 2.3.7.43.1807.

• $s_n > 2^{2^{n-1}}$ for all *n*, grows doubly exponential with respect to *n*.

・ロン・雪>・ヨン・ヨン・ヨー のへで

•
$$\frac{1}{s_0} + \frac{1}{s_1} + \dots + \frac{1}{s_{n-1}} = 1 - \frac{1}{s_n - 1}$$
.

	Canonical	proofs	terminal	proofs	Large volume
000000					

$$s_0 = 2$$
, and $s_n = s_{n-1}(s_{n-1} - 1) + 1$ for $n \ge 1$.
First few terms: 2,3,7,43,1807.

• $s_n > 2^{2^{n-1}}$ for all *n*, grows doubly exponential with respect to *n*.

イロン 不良 とくほど くほど ほし のべの

•
$$\frac{1}{s_0} + \frac{1}{s_1} + \dots + \frac{1}{s_{n-1}} = 1 - \frac{1}{s_n - 1}$$
.

	Canonical	proofs	terminal	proofs	Large volume
000000					

$$s_0 = 2$$
, and $s_n = s_{n-1}(s_{n-1} - 1) + 1$ for $n \ge 1$.
First few terms: 2,3,7,43,1807.

• $s_n > 2^{2^{n-1}}$ for all *n*, grows doubly exponential with respect to *n*.

•
$$\frac{1}{s_0} + \frac{1}{s_1} + \dots + \frac{1}{s_{n-1}} = 1 - \frac{1}{s_{n-1}}$$
.

Preparation	Canonical	proofs	terminal	proofs	Large volume
ooooo●	000000000000	0000000	0000	00	

$$s_0 = 2$$
, and $s_n = s_{n-1}(s_{n-1} - 1) + 1$ for $n \ge 1$.
First few terms: 2,3,7,43,1807.

• $s_n > 2^{2^{n-1}}$ for all *n*, grows doubly exponential with respect to *n*.

<ロ>×日>×日>×日>×日>×日><</p>

•
$$\frac{1}{s_0} + \frac{1}{s_1} + \dots + \frac{1}{s_{n-1}} = 1 - \frac{1}{s_n - 1}$$
.

Preparation	Canonical	proofs	terminal	proofs	Large volume
ooooo●	000000000000	0000000	0000	00	

$$s_0 = 2$$
, and $s_n = s_{n-1}(s_{n-1} - 1) + 1$ for $n \ge 1$.
First few terms: 2,3,7,43,1807.

• $s_n > 2^{2^{n-1}}$ for all *n*, grows doubly exponential with respect to *n*.

< ロ > < 同 > < 三 > < 三 > 、 三 > へ 回 > 、 ○ へ ○ >

Preparation	Canonical	proofs	terminal	proofs	Large volume
ooooo●	000000000000	0000000	0000	00	

$$s_0 = 2$$
, and $s_n = s_{n-1}(s_{n-1} - 1) + 1$ for $n \ge 1$.
First few terms: 2,3,7,43,1807.

• $s_n > 2^{2^{n-1}}$ for all *n*, grows doubly exponential with respect to *n*.

•
$$\frac{1}{s_0} + \frac{1}{s_1} + \cdots + \frac{1}{s_{n-1}} = 1 - \frac{1}{s_n-1}$$
.

Preparation		proofs	terminal	proofs	Large volume
	•00000000000				

Canonical singularities

Lower dimensions

Del Pezzo surface $X = \mathbb{P}^2(3, 2, 1)$ has Fano index 6 which is the largest Fano index among all weighted projective planes with canonical singularities (Brown and Kasprzyk).

うして ふぼう メロット ロー うめの

I show the result in greater generality:

Proposition (Wang2023)

Among all canonical del Pezzo surfaces, the WPS $X = \mathbb{P}^2(3, 2, 1)$ has the largest Fano index 6.

Preparation	Canonical	proofs	terminal	proofs	Large volume
000000	●ooooooooooooo	0000000	0000	00	

Canonical singularities

Lower dimensions

Del Pezzo surface $X = \mathbb{P}^2(3, 2, 1)$ has Fano index 6 which is the largest Fano index among all weighted projective planes with canonical singularities (Brown and Kasprzyk).

うして ふぼう メロット ロー うめの

I show the result in greater generality:

Proposition (Wang2023)

Among all canonical del Pezzo surfaces, the WPS $X = \mathbb{P}^2(3, 2, 1)$ has the largest Fano index 6.
Preparation	Canonical	proofs	terminal	proofs	Large volume
000000	●ooooooooooooo	0000000	0000	00	

Canonical singularities

Lower dimensions

Del Pezzo surface $X = \mathbb{P}^2(3, 2, 1)$ has Fano index 6 which is the largest Fano index among all weighted projective planes with canonical singularities (Brown and Kasprzyk).

I show the result in greater generality:

Proposition (Wang2023)

Among all canonical del Pezzo surfaces, the WPS $X = \mathbb{P}^2(3, 2, 1)$ has the largest Fano index 6.

Preparation	Canonical ⊙●○○○○○○○○○○	proofs 0000000	terminal 0000	proofs 00	Large volume

• $n = 3, X = \mathbb{P}^3(33, 22, 6, 5)$ has Fano index 66.

It is the largest Fano index among all WPS of dimension 3 with canonical singularities (Averkov, Kasprzyk, Lehmann, Nill).

n = 4, X = ℙ⁴(1743, 1162, 498, 42, 41) has Fano index 3486.

It is largest Fano index among all WPS of dimension 4 with canonical singularities (Kasprzyk).

Preparation	Canonical	proofs	terminal	proofs	Large volume
000000	ooooooooooooo	0000000	0000	00	

- n = 3, X = P³(33, 22, 6, 5) has Fano index 66. It is the largest Fano index among all WPS of dimension 3 with canonical singularities (Averkov, Kasprzyk, Lehmann, Nill).
- *n* = 4, *X* = ℙ⁴(1743, 1162, 498, 42, 41) has Fano index 3486.

It is largest Fano index among all WPS of dimension 4 with canonical singularities (Kasprzyk).

うして ふぼう メロット ロー うめの

Preparation	Canonical	proofs	terminal	proofs	Large volume
000000	ooooooooooooo	0000000	0000	00	

- n = 3, X = P³(33, 22, 6, 5) has Fano index 66. It is the largest Fano index among all WPS of dimension 3 with canonical singularities (Averkov, Kasprzyk, Lehmann, Nill).
- $n = 4, X = \mathbb{P}^4(1743, 1162, 498, 42, 41)$ has Fano index 3486.

It is largest Fano index among all WPS of dimension 4 with canonical singularities (Kasprzyk).

< ロ > < 同 > < 三 > < 三 > 、 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Preparation	Canonical	proofs	terminal	proofs	Large volume
000000	ooooooooooooo	0000000	0000	00	

- n = 3, X = P³(33, 22, 6, 5) has Fano index 66. It is the largest Fano index among all WPS of dimension 3 with canonical singularities (Averkov, Kasprzyk, Lehmann, Nill).
- n = 4, $X = \mathbb{P}^4(1743, 1162, 498, 42, 41)$ has Fano index 3486.

It is largest Fano index among all WPS of dimension 4 with canonical singularities (Kasprzyk).

ういつ 川田 くま くま くち くち くう

Preparation		proofs	terminal	proofs	Large volume
	00000000000				

Theorem (Wang2023)

For each integer $n \ge 2$, let

- $h = (s_{n-1} 1)(2s_{n-1} 3),$
- $a_i = h/s_{n-i}$ for $2 \le i \le n$,
- $a_1 = s_{n-1} 1$ and $a_0 = s_{n-1} 2$.

Then the WPS

 $X = \mathbb{P}^n(a_n, \ldots, a_0) = \mathbb{P}^n(h/s_0, \ldots, h/s_{n-2}, s_{n-1} - 1, s_{n-1} - 2)$ is well-formed with canonical singularities and with Fano index h.

Preparation		proofs	terminal	proofs	Large volume
	00000000000				

Theorem (Wang2023)

For each integer $n \ge 2$, let

- $h = (s_{n-1} 1)(2s_{n-1} 3),$
- $a_i = h/s_{n-i}$ for $2 \le i \le n$,
- $a_1 = s_{n-1} 1$ and $a_0 = s_{n-1} 2$.

Then the WPS

 $X = \mathbb{P}^n(a_n, \ldots, a_0) = \mathbb{P}^n(h/s_0, \ldots, h/s_{n-2}, s_{n-1} - 1, s_{n-1} - 2)$ is well-formed with canonical singularities and with Fano index h.

Conjecture: this is the example of the largest possible Fano index among all Fano n-folds with canonical singularities. True for dim = 2

< ロ > < 同 > < 三 > < 三 > 、 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Preparation		proofs	terminal	proofs	Large volume
	00000000000				

Theorem (Wang2023)

For each integer $n \ge 2$, let

- $h = (s_{n-1} 1)(2s_{n-1} 3),$
- $a_i = h/s_{n-i}$ for $2 \le i \le n$,
- $a_1 = s_{n-1} 1$ and $a_0 = s_{n-1} 2$.

Then the WPS

 $X = \mathbb{P}^n(a_n, \ldots, a_0) = \mathbb{P}^n(h/s_0, \ldots, h/s_{n-2}, s_{n-1} - 1, s_{n-1} - 2)$ is well-formed with canonical singularities and with Fano index h.

Preparation		proofs	terminal	proofs	Large volume
	00000000000				

Theorem (Wang2023)

For each integer $n \ge 2$, let

•
$$h = (s_{n-1} - 1)(2s_{n-1} - 3),$$

•
$$a_i = h/s_{n-i}$$
 for $2 \le i \le n$,

•
$$a_1 = s_{n-1} - 1$$
 and $a_0 = s_{n-1} - 2$.

Then the WPS

 $X = \mathbb{P}^n(a_n, \ldots, a_0) = \mathbb{P}^n(h/s_0, \ldots, h/s_{n-2}, s_{n-1} - 1, s_{n-1} - 2)$ is well-formed with canonical singularities and with Fano index h.

Preparation		proofs	terminal	proofs	Large volume
	00000000000				

Theorem (Wang2023)

For each integer $n \ge 2$, let

•
$$h = (s_{n-1} - 1)(2s_{n-1} - 3),$$

•
$$a_i = h/s_{n-i}$$
 for $2 \le i \le n$,

•
$$a_1 = s_{n-1} - 1$$
 and $a_0 = s_{n-1} - 2$.

Then the WPS

 $X = \mathbb{P}^n(a_n, \ldots, a_0) = \mathbb{P}^n(h/s_0, \ldots, h/s_{n-2}, s_{n-1} - 1, s_{n-1} - 2)$ is well-formed with canonical singularities and with Fano index h.

Preparation		proofs	terminal	proofs	Large volume
	00000000000				

Theorem (Wang2023)

For each integer $n \ge 2$, let

•
$$h = (s_{n-1} - 1)(2s_{n-1} - 3),$$

•
$$a_i = h/s_{n-i}$$
 for $2 \le i \le n$,

•
$$a_1 = s_{n-1} - 1$$
 and $a_0 = s_{n-1} - 2$.

Then the WPS

 $X = \mathbb{P}^n(a_n, \ldots, a_0) = \mathbb{P}^n(h/s_0, \ldots, h/s_{n-2}, s_{n-1} - 1, s_{n-1} - 2)$ is well-formed with canonical singularities and with Fano index h.

Preparation	Canonical ooo●oooooooooo	proofs 0000000	terminal 0000	proofs 00	Large volume

• $n = 2, X = \mathbb{P}^2(3, 2, 1), \operatorname{FI}(X) = 6,$ • $n = 3, X = \mathbb{P}^3(33, 22, 6, 5), \operatorname{FI}(X) = 66,$ • $n = 4, X = \mathbb{P}^4(1743, 1162, 498, 42, 41), \operatorname{FI}(X) = 3486.$ Let $h_n = (s_n - 1)(2s_n - 3).$ We have $h = h_{n-1}$ above.

Preparation	Canonical	proofs	terminal	proofs	Large volume
000000	00000000000	0000000	0000	00	

•
$$n = 2, X = \mathbb{P}^2(3, 2, 1), \operatorname{FI}(X) = 6,$$

• $n = 3, X = \mathbb{P}^3(33, 22, 6, 5), \operatorname{FI}(X) = 66,$
• $n = 4, X = \mathbb{P}^4(1743, 1162, 498, 42, 41), \operatorname{FI}(X) = 3486.$
Let $h_n = (s_n - 1)(2s_n - 3).$ We have $h = h_{n-1}$ above.

・ロン・聞とく思とく思い ほうのへの

Preparation	Canonical	proofs	terminal	proofs	Large volume
000000	00000000000	0000000	0000	00	

•
$$n = 2, X = \mathbb{P}^2(3, 2, 1), \text{FI}(X) = 6,$$

• $n = 3, X = \mathbb{P}^3(33, 22, 6, 5), \text{FI}(X) = 66,$
• $n = 4, X = \mathbb{P}^4(1743, 1162, 498, 42, 41), \text{FI}(X) = 3486.$
Let $h_n = (s_n - 1)(2s_n - 3).$ We have $h = h_{n-1}$ above.

・ロント語 とく思 とくほう いい しょうくの

 Preparation
 Canonical
 proofs
 terminal
 proofs
 Large volume

 000000
 000000000
 000000
 0000
 000
 0000000

Index of Calabi-Yau varieties

A normal projective variety X is **Calabi-Yau** if its canonical divisor $K_X \sim_{\mathbb{Q}} 0$.

The **index** of *X* is the smallest positive integer *m* with $mK_X \sim 0$.

- A smooth CY surface of index 6 : a "bielliptic" surface $(E_1 \times E_2)/\mu_6$, where E_i is a smooth elliptic curve.
- A smooth CY 3-fold of index 66 : (Z × E)/µ₆₆, where Z is a smooth K3 surface.

Calabi-Yau pair (X, D):

a normal projective variety X, an *effective* \mathbb{Q} -divisor D on X such that $K_X + D \sim_{\mathbb{Q}} 0$.

Preparation		proofs	terminal	proofs	Large volume
	00000000000				

Klt Calabi-Yau pairs with standard coefficients

(X, D): a klt Calabi-Yau pair with standard coefficients $(1 - \frac{1}{b}, b \in \mathbb{Z}_{>0})$, and index *m*.

The (global) **index-1 cover** of (X, D) is a projective variety X' with canonical Gorenstein singularities s.t. $K_{X'} \sim 0$.

Here (X, D) is the quotient of X' by an action of the cyclic group μ_m such that μ_m acts faithfully on $H^0(Y, K_{X'}) \cong \mathbb{C}$. (In dim 2, purely non-symplectic action)

< ロ > < 同 > < 三 > < 三 > 、 三 > への < つ > <

 $\pi: X' \to X, \, K_{X'} = \pi^*(K_X + D).$

Preparation		proofs	terminal	proofs	Large volume
	00000000000				

Klt Calabi-Yau pairs with standard coefficients

(X, D): a klt Calabi-Yau pair with standard coefficients $(1 - \frac{1}{b}, b \in \mathbb{Z}_{>0})$, and index *m*. The (global) **index-1 cover** of (X, D) is a projective variety X' with canonical Gorenstein singularities s.t. $K_{X'} \sim 0$.

Here (X, D) is the quotient of X' by an action of the cyclic group μ_m such that μ_m acts faithfully on $H^0(Y, K_{X'}) \cong \mathbb{C}$. (In dim 2, purely non-symplectic action)

< ロ > < 同 > < 三 > < 三 > 、 三 > への < つ > <

 $\pi: X' \to X, \, K_{X'} = \pi^*(K_X + D).$

Preparation		proofs	terminal	proofs	Large volume
	00000000000				

Klt Calabi-Yau pairs with standard coefficients

(X, D): a klt Calabi-Yau pair with standard coefficients $(1 - \frac{1}{b}, b \in \mathbb{Z}_{>0})$, and index *m*.

The (global) **index-1 cover** of (X, D) is a projective variety X' with canonical Gorenstein singularities s.t. $K_{X'} \sim 0$.

Here (X, D) is the quotient of X' by an action of the cyclic group μ_m such that μ_m acts faithfully on $H^0(Y, K_{X'}) \cong \mathbb{C}$. (In dim 2, purely non-symplectic action)

うして ふぼう メロット ロー うめの

$$\pi: X' \to X, \ K_{X'} = \pi^*(K_X + D).$$

Preparation

terminal

proofs

Large volume

Klt CY pair in dim. 1 of the largest index

The unique klt CY pair of index 6: $(\mathbb{P}^1, \frac{1}{2}p_1 + \frac{2}{3}p_2 + \frac{5}{6}p_3)$. Index cover X' is the *unique* elliptic curve $\mathbb{C}/\mathbb{Z}[\zeta]$ over \mathbb{C} , where ζ is a cubic root of unity. $K_{X'} = \pi^*(K_{\mathbb{P}^1} + \frac{1}{2}p_1 + \frac{2}{3}p_2 + \frac{5}{6}p_3)$.

Preparation		proofs	terminal	proofs	Large volume
	000000000000				

Calabi-Yau variety with small volume

For
$$n \in \mathbb{Z}_{\geq 0}$$
, let $h_n = (s_n - 1)(2s_n - 3)$ and $d = 2s_n - 2$, the hypersurface $\widehat{X'_{h_n}} \subset \mathbb{P}(h_n/s_0, \dots, h_n/s_{n-1}, s_n - 1, s_n - 2)$ defined by $x_0^2 + x_1^3 + \dots + x_{n-1}^{s_n-1} + x_n^{d-1} + x_n x_{n+1}^d = 0$ has $\operatorname{vol}(\mathcal{O}_{\widehat{X'_{h_n}}}(1)) < 1/2^{2^n}$.

It is the conjecturally **minimum volume** among all canonical Calabi-Yau *n*-folds with an ample Weil divisor O(1). (ETW 2021)

シック・ヨー ヘヨン ヘヨン トロン

• charge q_i : the sum of the entries of the *i*-th row of A^{-1} ,

- *d*: the least common denominator of q_i and $w_i := dq_i$,
- W = 0 defines a degree *d* hypersurface in $\mathbb{P}(w_1, \ldots, w_n)$.

Let W be the potential described by the transpose matrix of A.

< ロ > < 同 > < 三 > < 三 > 、 三 > への < つ > <

• charge q_i : the sum of the entries of the *i*-th row of A^{-1} ,

- *d*: the least common denominator of q_i and $w_i := dq_i$,
- W = 0 defines a degree *d* hypersurface in $\mathbb{P}(w_1, \ldots, w_n)$.

Let \widehat{W} be the potential described by the transpose matrix of A.

• charge q_i : the sum of the entries of the *i*-th row of A^{-1} ,

- *d*: the least common denominator of q_i and $w_i := dq_i$,
- W = 0 defines a degree *d* hypersurface in $\mathbb{P}(w_1, \ldots, w_n)$.

Let \widehat{W} be the potential described by the transpose matrix of A.

- charge q_i : the sum of the entries of the *i*-th row of A^{-1} ,
- *d*: the least common denominator of q_i and $w_i := dq_i$,
- W = 0 defines a degree *d* hypersurface in $\mathbb{P}(w_1, \ldots, w_n)$.

Let \widehat{W} be the potential described by the transpose matrix of A.

- charge q_i : the sum of the entries of the *i*-th row of A^{-1} ,
- *d*: the least common denominator of q_i and $w_i := dq_i$,
- W = 0 defines a degree *d* hypersurface in $\mathbb{P}(w_1, \ldots, w_n)$.

Let \widehat{W} be the potential described by the transpose matrix of A.

< ロ > < 同 > < 三 > < 三 > 、 三 > への < つ > <

- charge q_i : the sum of the entries of the *i*-th row of A^{-1} ,
- *d*: the least common denominator of q_i and $w_i := dq_i$,
- W = 0 defines a degree *d* hypersurface in $\mathbb{P}(w_1, \ldots, w_n)$.

Let \widehat{W} be the potential described by the transpose matrix of A.

Preparation	Canonical	proofs	terminal	proofs	Large volume
000000	oooooooooooooo	0000000	0000	00	

(BHK) mirror

・ロト・聞 とくほ とくほとし ほし ろくの

Preparation
coccocciCanonical
occocciccioproofs
coccocciccioterminal
coccocciccioproofs
cocciccioLarge volume
coccocciccioFor $n \in \mathbb{Z}_{\geq 0}$, $h_n = (s_n - 1)(2s_n - 3)$, $d = 2s_n - 2 = 2s_0 \cdots s_{n-1}$ •The hypersurface $X'_d \subset \mathbb{P}(d/s_0, \dots, d/s_{n-1}, 1, 1)$ defined
by $x_0^2 + x_1^3 + \cdots + x_{n-1}^{s_{n-1}} + x_n^{d-1}x_{n+1} + x_{n+1}^d = 0$ is
quasi-smooth of dimension n, canonical, and has $K_{X'} \sim 0$;• X'_{h_n} is the Berglund-Hübsch-Krawitz (BHK) mirror of X'. X'_{h_n} X'_{h_n}

There is a easy combinatorial way to compute big cyclic group action on the hypersurface defined by a potential.

- μ_{h_n} acts $\mathbb{P}(d/s_0, \dots, d/s_{n-1}, 1, 1)$ by $\zeta[x_0 : \dots : x_{n+1}] = [\zeta^{d/(2s_0)}x_0 : \zeta^{d/(2s_1)}x_1 : \dots : \zeta^{d/(2s_{n-1})}x_{n-1} : x_n : \zeta^{d/2}x_{n+1}].$
- X' is invariant under this action. The quotient of X' by μ_{h_n} gives a klt Calabi-Yau pair of large index h_n .

$$h_n > 2^{2^n} \stackrel{\mathsf{mirror}}{\longleftrightarrow} \mathrm{vol} < 1/2^{2^n}$$

PreparationCanonical
occoccocoproofs
coccoccocoterminal
coccoccocoproofs
coccoccocoLarge volume
coccoccocoFor $n \in \mathbb{Z}_{\geq 0}$, $h_n = (s_n - 1)(2s_n - 3)$, $d = 2s_n - 2 = 2s_0 \cdots s_{n-1}$ The hypersurface $X'_d \subset \mathbb{P}(d/s_0, \dots, d/s_{n-1}, 1, 1)$ defined
by $x_0^2 + x_1^3 + \cdots + x_{n-1}^{s_{n-1}} + x_n^{d-1}x_{n+1} + x_{n+1}^d = 0$ is
quasi-smooth of dimension n, canonical, and has $K_{X'} \sim 0$;• $\widehat{X'_{h_n}}$ is the Berglund-Hübsch-Krawitz (BHK) mirror of X'.

There is a easy combinatorial way to compute big cyclic group action on the hypersurface defined by a potential.

- μ_{h_n} acts $\mathbb{P}(d/s_0, \dots, d/s_{n-1}, 1, 1)$ by $\zeta[x_0 : \dots : x_{n+1}] = [\zeta^{d/(2s_0)}x_0 : \zeta^{d/(2s_1)}x_1 : \dots : \zeta^{d/(2s_{n-1})}x_{n-1} : x_n : \zeta^{d/2}x_{n+1}]$
- X' is invariant under this action. The quotient of X' by μ_{h_n} gives a klt Calabi-Yau pair of large index h_n .

$$h_n > 2^{2^n} \stackrel{\text{mirror}}{\longleftrightarrow} \mathrm{vol} < 1/2^{2^n}$$

Preparation
coccoccCanonical
occoccoccproofs
coccoccterminal
coccoccproofs
coccoccLarge volume
coccoccFor $n \in \mathbb{Z}_{\geq 0}$, $h_n = (s_n - 1)(2s_n - 3)$, $d = 2s_n - 2 = 2s_0 \cdots s_{n-1}$ •The hypersurface $X'_d \subset \mathbb{P}(d/s_0, \dots, d/s_{n-1}, 1, 1)$ defined
by $x_0^2 + x_1^3 + \dots + x_{n-1}^{S_{n-1}} + x_n^{d-1}x_{n+1} + x_{n+1}^d = 0$ is
quasi-smooth of dimension n, canonical, and has $K_{X'} \sim 0$;
••• $\widehat{X'_{h_n}}$ is the Berglund-Hübsch-Krawitz (BHK) mirror of X'.

There is a easy combinatorial way to compute big cyclic group action on the hypersurface defined by a potential.

- μ_{h_n} acts $\mathbb{P}(d/s_0, \dots, d/s_{n-1}, 1, 1)$ by $\zeta[x_0 : \dots : x_{n+1}] = [\zeta^{d/(2s_0)}x_0 : \zeta^{d/(2s_1)}x_1 : \dots : \zeta^{d/(2s_{n-1})}x_{n-1} : x_n : \zeta^{d/2}x_{n+1}].$
- X' is invariant under this action. The quotient of X' by μ_{h_n} gives a klt Calabi-Yau pair of large index h_n.

$$h_n > 2^{2^n} \stackrel{\text{mirror}}{\longleftrightarrow} \text{vol} < 1/2^{2^n}$$

<ロ> <用> <用> < 三> < 三> < 三) のQ()

Preparation		proofs	terminal	proofs	Large volume
	0000000000000				

Calabi-Yau pairs of large index (simplified description)

Theorem (ETW 2022)

For an integer $n \ge 2$, let

• $X = \mathbb{P}^{n}(d^{(n-1)}, d-1, 1)$ with $d = 2s_{n} - 2$ and coordinates y_{1}, \dots, y_{n+1} ;

• divisor $D_i = \{y_i = 0\}$ on X for $1 \le i \le n$;

• divisor $D_0 = \{y_1 + \dots + y_{n-1} + y_n y_{n+1} + y_{n+1}^d = 0\};$

•
$$D = \frac{1}{2}D_0 + \frac{2}{3}D_1 + \dots + \frac{s_{n-1}-1}{s_{n-1}}D_{n-1} + \frac{d-2}{d-1}D_n.$$

Then (X, D) is a klt Calabi-Yau pair of dimension n with standard coefficients of index $h_n = (s_n - 1)(2s_n - 3) > 2^{2^n}$

Conjecture: this is the example of largest index. True for dim= 2.

Calabi-Yau pairs of large index (simplified description)

Theorem (ETW 2022)

For an integer $n \ge 2$, let

• $X = \mathbb{P}^{n}(d^{(n-1)}, d-1, 1)$ with $d = 2s_{n} - 2$ and coordinates y_{1}, \dots, y_{n+1} ;

• divisor $D_i = \{y_i = 0\}$ on X for $1 \le i \le n$;

• divisor $D_0 = \{y_1 + \dots + y_{n-1} + y_n y_{n+1} + y_{n+1}^d = 0\};$

•
$$D = \frac{1}{2}D_0 + \frac{2}{3}D_1 + \cdots + \frac{s_{n-1}-1}{s_{n-1}}D_{n-1} + \frac{d-2}{d-1}D_n.$$

Then (X, D) is a klt Calabi-Yau pair of dimension n with standard coefficients of index $h_n = (s_n - 1)(2s_n - 3) > 2^{2^n}$

Conjecture: this is the example of largest index. True for dim= 2.

Calabi-Yau pairs of large index (simplified description)

Theorem (ETW 2022)

For an integer $n \ge 2$, let

•
$$X = \mathbb{P}^{n}(d^{(n-1)}, d-1, 1)$$
 with $d = 2s_{n} - 2$ and coordinates y_{1}, \dots, y_{n+1} ;

• divisor
$$D_i = \{y_i = 0\}$$
 on X for $1 \le i \le n$;

• divisor
$$D_0 = \{y_1 + \dots + y_{n-1} + y_n y_{n+1} + y_{n+1}^d = 0\};$$

•
$$D = \frac{1}{2}D_0 + \frac{2}{3}D_1 + \cdots + \frac{s_{n-1}-1}{s_{n-1}}D_{n-1} + \frac{d-2}{d-1}D_n.$$

Then (X, D) is a klt Calabi-Yau pair of dimension n with standard coefficients of index $h_n = (s_n - 1)(2s_n - 3) > 2^{2^n}$.

<ロ> <用> <用> < 三> < 三> < 三) のQ()

Conjecture: this is the example of largest index. True for dim= 2.

Preparation	Canonical 000000000000	proofs 0000000	terminal 0000	proofs 00	Large volume
Dimensi	on 2				

$(X, D) = (\mathbb{P}^2(12, 11, 1), \frac{1}{2}D_0 + \frac{2}{3}D_1 + \frac{10}{11}D_2).$

Index-1 cover: $X'_{12} \subset \mathbb{P}(6, 4, 1, 1)$ given by $x_0^2 + x_1^3 + x_2^{11}x_3 + x_3^{12} = 0$ acted by μ_{66} .

 $\widehat{X_{66}'} \subset \mathbb{P}(33,22,6,5)$ given by $x_0^2 + x_1^3 + x_2^{11} + x_2 x_3^{12} = 0$

 $X'_{12} \xleftarrow{\text{mirror}} \widehat{X'_{66}}$

メロト (局) (日) (日) (日) (日) (の)

66 is conjecturally largest Fano index in dimension 3.

Preparation	Canonical 000000000000	proofs 0000000	terminal 0000	proofs 00	Large volume
Dimens	ion 2				

$$(X, D) = (\mathbb{P}^2(12, 11, 1), \frac{1}{2}D_0 + \frac{2}{3}D_1 + \frac{10}{11}D_2).$$

Index-1 cover: $X'_{12} \subset \mathbb{P}(6,4,1,1)$ given by $x_0^2 + x_1^3 + x_2^{11}x_3 + x_3^{12} = 0$ acted by μ_{66} .

 $\widehat{X_{66}'} \subset \mathbb{P}(33,22,6,5)$ given by $x_0^2 + x_1^3 + x_2^{11} + x_2 x_3^{12} = 0$

$$X'_{12} \xleftarrow{\text{mirror}} \widehat{X'_{66}}$$

66 is conjecturally largest Fano index in dimension 3.

Preparation	Canonical 000000000000	proofs 0000000	terminal 0000	proofs 00	Large volume
Dimensi	on 2				

$$(X, D) = (\mathbb{P}^2(12, 11, 1), \frac{1}{2}D_0 + \frac{2}{3}D_1 + \frac{10}{11}D_2).$$

Index-1 cover: $X'_{12} \subset \mathbb{P}(6,4,1,1)$ given by $x_0^2 + x_1^3 + x_2^{11}x_3 + x_3^{12} = 0$ acted by μ_{66} .

< ロ > < 同 > < 三 > < 三 > 、 三 > への < つ > <

$$\widehat{X_{66}'} \subset \mathbb{P}(33, 22, 6, 5)$$
 given by $x_0^2 + x_1^3 + x_2^{11} + x_2 x_3^{12} = 0$
 $X_{12}' \xleftarrow{\text{mirror}} \widehat{X_{66}'}$

66 is conjecturally largest Fano index in dimension 3.
Preparation	Canonical 0000000000000	proofs ●000000	terminal 0000	proofs 00	Large volume

Proposition (Wang2023)

Among all canonical del Pezzo surfaces, the WPS $X = \mathbb{P}^2(3, 2, 1)$ has the largest Fano index 6.

Fano index of $\mathbb{P}^2(3, 2, 1)$ is 3 + 2 + 1 = 6.

Preparation	Canonical ০০০০০০০০০০০০০০০	<mark>proofs</mark> o●ooooo	terminal 0000	proofs 00	Large volume

Let X be a smooth projective surface and Y be the blow-up of X at a point. Then K_Y is always primitive, i.e., then there exists no element $A \in Pic(Y)$ such that $K_Y \sim_{\mathbb{Q}} mA$ for some integer $m \ge 2$.

```
Proof: We have K_Y \cdot E = -1, where E is the exceptional divisor
of the blow up.
K_Y \sim_{\mathbb{Q}} mA for some positive integer m and A \in \text{Pic}(Y)
\Downarrow
m(A \cdot E) = -1.
Y is smooth \Rightarrow A \cdot E is an integer \Rightarrow m = 1.
```

Preparation	Canonical	<mark>proofs</mark>	terminal	proofs	Large volume
000000	000000000000	o●ooooo	0000	00	

Let X be a smooth projective surface and Y be the blow-up of X at a point. Then K_Y is always primitive, i.e., then there exists no element $A \in Pic(Y)$ such that $K_Y \sim_{\mathbb{Q}} mA$ for some integer $m \ge 2$.

Proof: We have $K_Y \cdot E = -1$, where *E* is the exceptional divisor of the blow up.

```
K_Y \sim_{\mathbb{Q}} mA for some positive integer m and A \in \operatorname{Pic}(Y \downarrow m(A \cdot E) = -1.
Y is smooth \Rightarrow A \cdot E is an integer \Rightarrow m = 1.
```

Preparation	Canonical ০০০০০০০০০০০০০০	proofs o●ooooo	terminal 0000	proofs 00	Large volume

Let X be a smooth projective surface and Y be the blow-up of X at a point. Then K_Y is always primitive, i.e., then there exists no element $A \in Pic(Y)$ such that $K_Y \sim_{\mathbb{Q}} mA$ for some integer $m \geq 2$.

Proof: We have $K_Y \cdot E = -1$, where *E* is the exceptional divisor of the blow up. $K_Y \sim_{\mathbb{Q}} mA$ for some positive integer *m* and $A \in \text{Pic}(Y)$ \Downarrow $m(A \cdot E) = -1$. *Y* is smooth $\Rightarrow A \cdot E$ is an integer $\Rightarrow m = 1$.

Preparation	Canonical 000000000000	<mark>proofs</mark> o●oooooo	terminal 0000	proofs 00	Large volume

Let X be a smooth projective surface and Y be the blow-up of X at a point. Then K_Y is always primitive, i.e., then there exists no element $A \in Pic(Y)$ such that $K_Y \sim_{\mathbb{Q}} mA$ for some integer $m \ge 2$.

Proof: We have $K_Y \cdot E = -1$, where *E* is the exceptional divisor of the blow up. $K_Y \sim_{\mathbb{Q}} mA$ for some positive integer *m* and $A \in \text{Pic}(Y)$ \Downarrow $m(A \cdot E) = -1$. *Y* is smooth $\Rightarrow A \cdot E$ is an integer $\Rightarrow m = 1$.

Preparation	Canonical 000000000000	<mark>proofs</mark> oo●oooo	terminal 0000	proofs 00	Large volume

Lemma (2)

For a canonical del Pezzo surface S with Picard number one, the Fano index $FI(S) \le 6$.

Idea: Use classification of canonical (equivalent to Gorenstein in dimension 2) del Pezzo surfaces S with Picard number one, and canonical volume $(-K_S)^2$. (Miyanishi, Zhang)

・ロン・白シュー シャー・ モー うくの

Preparation	Canonical	<mark>proofs</mark>	terminal	proofs	Large volume
000000	০০০০০০০০০০০০০	oo●oooo	0000	00	

Lemma (2)

For a canonical del Pezzo surface S with Picard number one, the Fano index $FI(S) \le 6$.

Idea: Use classification of canonical (equivalent to Gorenstein in dimension 2) del Pezzo surfaces *S* with Picard number one, and canonical volume $(-K_S)^2$. (Miyanishi, Zhang)

Preparation 000000	Canonical	proofs 0000000	terminal 0000	proofs oo	Large volume

- Assume that $-K_S \sim_{\mathbb{Q}} mA$ for some integer m > 0 and $A \in Cl(S)$.
- Similar analysis for each class.

When *S* has singularity of $2A_1 + A_3$, we have $(-K_S)^2 = 4$ and $\operatorname{Cl}(S)/\operatorname{Pic}(S) = \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$. $\Rightarrow 4A \in \operatorname{Pic}(S)$ and $(-K_S)^2 = \frac{m^2}{4^2}(4A)^2$. $\Rightarrow m^2 = \frac{4\cdot 16}{(4A)^2}$ and $(4A)^2 \in \mathbb{Z}$ since 4A is Cartier. $\Rightarrow m \le 6$ or m = 8.

Preparation 000000	Canonical	proofs 0000000	terminal 0000	proofs oo	Large volume

- Assume that $-K_S \sim_{\mathbb{Q}} mA$ for some integer m > 0 and $A \in Cl(S)$.
- Similar analysis for each class. When *S* has singularity of $2A_1 + A_3$, we have $(-K_S)^2 = 4$ and $\operatorname{Cl}(S)/\operatorname{Pic}(S) = \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$.

< ロ > < 同 > < 三 > < 三 > 、 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

⇒ $4A \in \operatorname{Pic}(S)$ and $(-K_S)^2 = \frac{m^2}{4^2}(4A)^2$. ⇒ $m^2 = \frac{4 \cdot 16}{(4A)^2}$ and $(4A)^2 \in \mathbb{Z}$ since 4A is Cartier. ⇒ $m \le 6$ or m = 8.

Preparation 000000	Canonical	<mark>proofs</mark> ooooooo	terminal 0000	proofs 00	Large volume

- Assume that $-K_S \sim_{\mathbb{Q}} mA$ for some integer m > 0 and $A \in Cl(S)$.
- Similar analysis for each class. When *S* has singularity of $2A_1 + A_3$, we have $(-K_S)^2 = 4$ and $\operatorname{Cl}(S)/\operatorname{Pic}(S) = \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$. $\Rightarrow 4A \in \operatorname{Pic}(S)$ and $(-K_S)^2 = \frac{m^2}{42}(4A)^2$.

⇒ $m^2 = \frac{4 \cdot 16}{(4A)^2}$ and $(4A)^2 \in \mathbb{Z}$ since 4A is Cartier. ⇒ $m \leq 6$ or m = 8.

Preparation 000000	Canonical	proofs 0000000	terminal 0000	proofs 00	Large volume

- Assume that $-K_S \sim_{\mathbb{Q}} mA$ for some integer m > 0 and $A \in Cl(S)$.
- Similar analysis for each class. When *S* has singularity of $2A_1 + A_3$, we have $(-K_S)^2 = 4$ and $\operatorname{Cl}(S)/\operatorname{Pic}(S) = \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$. $\Rightarrow 4A \in \operatorname{Pic}(S)$ and $(-K_S)^2 = \frac{m^2}{4^2}(4A)^2$. $\Rightarrow m^2 = \frac{4 \cdot 16}{(4A)^2}$ and $(4A)^2 \in \mathbb{Z}$ since 4A is Cartier. $\Rightarrow m \leq 6$ or m = 8.

Preparation 000000	Canonical	<mark>proofs</mark> ooooooo	terminal 0000	proofs 00	Large volume

- Assume that $-K_S \sim_{\mathbb{Q}} mA$ for some integer m > 0 and $A \in Cl(S)$.
- Similar analysis for each class. When *S* has singularity of $2A_1 + A_3$, we have $(-K_S)^2 = 4$ and $\operatorname{Cl}(S)/\operatorname{Pic}(S) = \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$. $\Rightarrow 4A \in \operatorname{Pic}(S)$ and $(-K_S)^2 = \frac{m^2}{4^2}(4A)^2$. $\Rightarrow m^2 = \frac{4 \cdot 16}{(4A)^2}$ and $(4A)^2 \in \mathbb{Z}$ since 4A is Cartier. $\Rightarrow m \leq 6$ or m = 8.

Preparation	Canonical 000000000000	<mark>proofs</mark> ooooooo	terminal 0000	proofs 00	Large volume

• only need to show that *m* cannot be 8.

Let $p: Y \to S$ be the minimal resolution of S. $\Rightarrow K_Y = p^*K_S$ and $p^*(4A) \in \operatorname{Pic}(Y)$. If $-K_S \sim_{\mathbb{Q}} 8A$, then $-K_Y \sim_{\mathbb{Q}} 2p^*(4A)$. Note that Y can be obtained by several blows up of points on smooth surfaces starting with \mathbb{P}^2 . We get **Contradiction** by Lemma (1).

<ロ> <用> <用> < 三> < 三> < 三) のQ()

• Similar arguments if *S* has other singularity.

Preparation	Canonical 000000000000	<mark>proofs</mark> ooooooo	terminal 0000	proofs 00	Large volume

 only need to show that *m* cannot be 8. Let p: Y → S be the minimal resolution of S.
 ⇒K_Y = p^{*}K_S and p^{*}(4A) ∈ Pic(Y). If -K_S ~_Q 8A, then -K_Y ~_Q 2p^{*}(4A). Note that Y can be obtained by several blows up of points on smooth surfaces starting with P². We get Contradiction by Lemma (1).

<ロ> <用> <用> < 三> < 三> < 三) のQ()

Similar arguments if S has other singularity.

Preparation	Canonical	<mark>proofs</mark>	terminal	proofs	Large volume
000000	000000000000	ooooooo	0000	00	

only need to show that *m* cannot be 8. Let *p* : *Y* → *S* be the minimal resolution of *S*. ⇒*K_Y* = *p***K_S* and *p**(4*A*) ∈ Pic(*Y*). If −*K_S* ~_Q 8*A*, then −*K_Y* ~_Q 2*p**(4*A*). Note that *Y* can be obtained by several blows up of points on smooth surfaces starting with P². We get **Contradiction** by Lemma (1).

< ロ > < 同 > < 三 > < 三 > 、 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Similar arguments if S has other singularity.

Preparation	Canonical	proofs	terminal	proofs	Large volume
000000	ooooooooooooo	oooo●oo	0000	00	

only need to show that *m* cannot be 8. Let p: Y → S be the minimal resolution of S. ⇒K_Y = p^{*}K_S and p^{*}(4A) ∈ Pic(Y). If -K_S ~_Q 8A, then -K_Y ~_Q 2p^{*}(4A). Note that Y can be obtained by several blows up of points on smooth surfaces starting with P². We get **Contradiction** by Lemma (1).

< ロ > < 同 > < 三 > < 三 > 、 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Similar arguments if S has other singularity.

Preparation	Canonical	<mark>proofs</mark> ooooooo	terminal 0000	proofs 00	Large volume

Sketch of proof:

 there is a contraction π : Z → S, where S is a canonical del Pezzo surfaces with Picard rank one or two (Miyanishi, Zhang).

< ロ > < 同 > < 三 > < 三 > 、 三 > への < つ > <

- K_Z = π^{*}(K_S) + E, where E is a linear combination of exceptional divisors with integer coefficients ⇒ π_{*}(K_Z) = K_S.
- FI(*Z*) > 6

 $\Rightarrow -K_Z \sim_{\mathbb{Q}} mA \text{ for some } A \in \operatorname{Cl}(Z) \text{ and } m > 6$ $\Rightarrow -K_S \sim_{\mathbb{Q}} m\pi_*(A) \text{ with } \pi_*(A) \in \operatorname{Cl}(S)$ $\Rightarrow \operatorname{Fl}(S) > 6.$

Preparation	Canonical	<mark>proofs</mark>	terminal	proofs	Large volume
000000	০০০০০০০০০০০০০০	oooooo∙o	0000	00	

Sketch of proof:

- there is a contraction π : Z → S, where S is a canonical del Pezzo surfaces with Picard rank one or two (Miyanishi, Zhang).
- K_Z = π^{*}(K_S) + E, where E is a linear combination of exceptional divisors with integer coefficients ⇒ π_{*}(K_Z) = K_S.
- $\operatorname{FI}(Z) > 6$

 $\Rightarrow -K_Z \sim_{\mathbb{Q}} mA \text{ for some } A \in \operatorname{Cl}(Z) \text{ and } m > 6$ $\Rightarrow -K_S \sim_{\mathbb{Q}} m\pi_*(A) \text{ with } \pi_*(A) \in \operatorname{Cl}(S)$ $\Rightarrow \operatorname{FI}(S) > 6.$

Preparation	Canonical	<mark>proofs</mark>	terminal	proofs	Large volume
000000	০০০০০০০০০০০০০০	ooooo∙o	0000	00	

Sketch of proof:

- there is a contraction π : Z → S, where S is a canonical del Pezzo surfaces with Picard rank one or two (Miyanishi, Zhang).
- *K_Z* = π^{*}(*K_S*) + *E*, where *E* is a linear combination of exceptional divisors with integer coefficients ⇒ π_{*}(*K_Z*) = *K_S*.

 $\Rightarrow -K_Z \sim_{\mathbb{Q}} mA \text{ for some } A \in \operatorname{Cl}(Z) \text{ and } m > 6$ $\Rightarrow -K_S \sim_{\mathbb{Q}} m\pi_*(A) \text{ with } \pi_*(A) \in \operatorname{Cl}(S)$ $\Rightarrow \operatorname{FI}(S) > 6.$

Preparation	Canonical	<mark>proofs</mark>	terminal	proofs	Large volume
000000	০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	ooooo∙o	0000	00	

Sketch of proof:

- there is a contraction π : Z → S, where S is a canonical del Pezzo surfaces with Picard rank one or two (Miyanishi, Zhang).
- *K_Z* = π^{*}(*K_S*) + *E*, where *E* is a linear combination of exceptional divisors with integer coefficients ⇒ π_{*}(*K_Z*) = *K_S*.
- $\operatorname{FI}(Z) > 6$ $\Rightarrow -K_Z \sim_{\mathbb{Q}} mA \text{ for some } A \in \operatorname{Cl}(Z) \text{ and } m > 6$ $\Rightarrow -K_S \sim_{\mathbb{Q}} m\pi_*(A) \text{ with } \pi_*(A) \in \operatorname{Cl}(S)$ $\Rightarrow \operatorname{FI}(S) > 6.$

Preparation	Canonical 000000000000	<mark>proofs</mark> oooooo●	terminal 0000	proofs 00	Large volume

- $(K_S)^2 \leq 9$. (Miyanishi, Zhang)
- if S is not smooth P¹ × P¹, all the possible singularity types that S could have are given by Miyanishi and Zhang as follows: 6A₁, 4A₁ + A₃, 4A₁, 2A₁ + D₄, 2A₁ + D₅, 2A₃, A₃ + D₄, D₄, D₆, D₇.
- Note the local class group of A_n, D_n(n even) and D_n(n odd) are Z/(n+1)Z, Z/2Z ⊕ Z/2Z and Z/4Z respectively (Lipman1969).

Preparation	Canonical	proofs	terminal	proofs	Large volume
000000	০০০০০০০০০০০০০	oooooo●	0000	00	

- $(K_S)^2 \leq 9$. (Miyanishi, Zhang)
- if S is not smooth P¹ × P¹, all the possible singularity types that S could have are given by Miyanishi and Zhang as follows: 6A₁, 4A₁ + A₃, 4A₁, 2A₁ + D₄, 2A₁ + D₅, 2A₃, A₃ + D₄, D₄, D₆, D₇.
- Note the local class group of A_n, D_n(n even) and D_n(n odd) are Z/(n+1)Z, Z/2Z ⊕ Z/2Z and Z/4Z respectively (Lipman1969).

Preparation	Canonical	<mark>proofs</mark>	terminal	proofs	Large volume
000000	০০০০০০০০০০০০০০০	ooooooo●	0000	00	

- $(K_S)^2 \leq 9$. (Miyanishi, Zhang)
- if S is not smooth P¹ × P¹, all the possible singularity types that S could have are given by Miyanishi and Zhang as follows: 6A₁, 4A₁ + A₃, 4A₁, 2A₁ + D₄, 2A₁ + D₅, 2A₃, A₃ + D₄, D₄, D₆, D₇.
- Note the local class group of A_n, D_n(n even) and D_n(n odd) are Z/(n+1)Z, Z/2Z ⊕ Z/2Z and Z/4Z respectively (Lipman1969).

Preparation	Canonical	<mark>proofs</mark>	terminal	proofs	Large volume
000000	০০০০০০০০০০০০০০০	ooooooo●	0000	00	

- $(K_S)^2 \leq 9$. (Miyanishi, Zhang)
- if S is not smooth P¹ × P¹, all the possible singularity types that S could have are given by Miyanishi and Zhang as follows: 6A₁, 4A₁ + A₃, 4A₁, 2A₁ + D₄, 2A₁ + D₅, 2A₃, A₃ + D₄, D₄, D₆, D₇.
- Note the local class group of A_n, D_n(n even) and D_n(n odd) are Z/(n+1)Z, Z/2Z ⊕ Z/2Z and Z/4Z respectively (Lipman1969).

Similar arguments as the case of Picard number one: assume $-K_S \sim_{\mathbb{Q}} mA$ for some integer m > 0 and $A \in Cl(S)$, we show $m \le 6$.

< ロ > < 同 > < 三 > < 三 > 、 三 > への < つ > <

Preparation	Canonical ০০০০০০০০০০০০০০০	<mark>proofs</mark> ooooooo●	terminal 0000	proofs 00	Large volume

- $(K_S)^2 \leq 9$. (Miyanishi, Zhang)
- if S is not smooth P¹ × P¹, all the possible singularity types that S could have are given by Miyanishi and Zhang as follows: 6A₁, 4A₁ + A₃, 4A₁, 2A₁ + D₄, 2A₁ + D₅, 2A₃, A₃ + D₄, D₄, D₆, D₇.
- Note the local class group of A_n, D_n(n even) and D_n(n odd) are Z/(n+1)Z, Z/2Z ⊕ Z/2Z and Z/4Z respectively (Lipman1969).

Preparation	Canonical	proofs	terminal	proofs	Large volume
000000	০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	0000000	●000	00	

Terminal singularities

Lower dimensions

- n = 3, X = P³(7, 5, 3, 2) has Fano index 17. It is the second largest Fano index for all Q−Fano threefolds. FI(P³(7, 5, 4, 3)) = 19 (Prokhorov).
- $n = 4, X = \mathbb{P}^4(430, 287, 123, 21, 20)$ has Fano index 881. It is the largest Fano index among all well-formed WPS with terminal singularities in dimension 4 (Brown, Kasprzyk)

< ロ > < 同 > < 三 > < 三 > 、 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Preparation	Canonical	proofs		proofs	Large volume
			0000		

Terminal singularities

Lower dimensions

- n = 3, X = P³(7, 5, 3, 2) has Fano index 17. It is the second largest Fano index for all Q−Fano threefolds. FI(P³(7, 5, 4, 3)) = 19 (Prokhorov).
- n = 4, $X = \mathbb{P}^4(430, 287, 123, 21, 20)$ has Fano index 881. It is the largest Fano index among all well-formed WPS with terminal singularities in dimension 4 (Brown, Kasprzyk)

ういつ 川田 くま くま くち くち くう

Preparation	Canonical	proofs		proofs	Large volume
			0000		

Theorem (Wang2023)

For each integer $n \ge 3$, let

•
$$a_0 = \frac{1}{2}(s_{n-1}-1)-1$$
,

•
$$a_1 = \frac{1}{2}(s_{n-1} - 1),$$

•
$$a_i = \frac{1}{2}(s_{n-1}-1)\frac{s_{n-1}-2}{s_{n-i}}$$
 for $2 \le i \le n-1$,

•
$$a_n = \frac{1}{2} (\frac{1}{2}(s_{n-1} - 1)(s_{n-1} - 2) - 1)),$$

Preparation	Canonical	proofs		proofs	Large volume
			0000		

Theorem (Wang2023)

For each integer $n \ge 3$, let

•
$$a_0 = \frac{1}{2}(s_{n-1}-1)-1$$
,

•
$$a_1 = \frac{1}{2}(s_{n-1} - 1),$$

•
$$a_i = \frac{1}{2}(s_{n-1}-1)\frac{s_{n-1}-2}{s_{n-i}}$$
 for $2 \le i \le n-1$,

•
$$a_n = \frac{1}{2} (\frac{1}{2}(s_{n-1}-1)(s_{n-1}-2)-1)),$$

Preparation	Canonical	proofs		proofs	Large volume
			0000		

Theorem (Wang2023)

For each integer $n \ge 3$, let

•
$$a_0 = \frac{1}{2}(s_{n-1} - 1) - 1$$

•
$$a_1 = \frac{1}{2}(s_{n-1} - 1),$$

•
$$a_i = \frac{1}{2}(s_{n-1}-1)\frac{s_{n-1}-2}{s_{n-i}}$$
 for $2 \le i \le n-1$,

•
$$a_n = \frac{1}{2} (\frac{1}{2}(s_{n-1}-1)(s_{n-1}-2)-1)),$$

Preparation	Canonical	proofs		proofs	Large volume
			0000		

Theorem (Wang2023)

For each integer $n \ge 3$, let

•
$$a_0 = \frac{1}{2}(s_{n-1} - 1) - 1$$

•
$$a_1 = \frac{1}{2}(s_{n-1} - 1),$$

•
$$a_i = \frac{1}{2}(s_{n-1}-1)\frac{s_{n-1}-2}{s_{n-i}}$$
 for $2 \le i \le n-1$,

•
$$a_n = \frac{1}{2} (\frac{1}{2}(s_{n-1}-1)(s_{n-1}-2)-1)),$$

Preparation	Canonical	proofs		proofs	Large volume
			0000		

Theorem (Wang2023)

For each integer $n \ge 3$, let

•
$$a_0 = \frac{1}{2}(s_{n-1} - 1) - 1$$

•
$$a_1 = \frac{1}{2}(s_{n-1} - 1),$$

•
$$a_i = \frac{1}{2}(s_{n-1}-1)\frac{s_{n-1}-2}{s_{n-i}}$$
 for $2 \le i \le n-1$,

•
$$a_n = \frac{1}{2} (\frac{1}{2}(s_{n-1}-1)(s_{n-1}-2)-1)),$$

Preparation	Canonical ০০০০০০০০০০০০০০	proofs 0000000	terminal ooeo	proofs 00	Large volume

• $n = 3, X = \mathbb{P}^{3}(7, 5, 3, 2), FI(X) = 17,$

• $n = 4, X = \mathbb{P}^4(430, 287, 123, 21, 20), FI(X) = 881.$

Conjecture: this is the example of the largest possible Fano index among all Fano n-folds ($n \ge 4$) with terminal singularities.

<ロ> <用> <用> < 三> < 三> < 三) のQ()

Preparation	Canonical ০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	proofs 0000000	terminal oo●o	proofs 00	Large volume

•
$$n = 3, X = \mathbb{P}^{3}(7, 5, 3, 2), FI(X) = 17,$$

•
$$n = 4, X = \mathbb{P}^4(430, 287, 123, 21, 20), FI(X) = 881.$$

Conjecture: this is the example of the largest possible Fano index among all Fano n-folds ($n \ge 4$) with terminal singularities.

イロト 不得 トイヨト イヨト ニヨー のくぐ

Preparation	Canonical ০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	proofs 0000000	terminal oooo	proofs 00	Large volume

Gorenstein

Theorem

For each integer $n \ge 1$, let $h = s_n - 1$. Then $X = \mathbb{P}^n(h/s_0, \dots, h/s_{n-1}, 1)$ is well-formed with Gorenstein canonical singularities and with Fano index h.

Nill gives this WPS and show it has largest Fano index among all well-formed WPS of dimension *n* with Gorenstein canonical singularities.

<ロ> <用> <用> < 三> < 三> < 三) のQ()

Conjecture.

Preparation	Canonical ০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	proofs 0000000	terminal oooo	proofs 00	Large volume

Gorenstein

Theorem

For each integer $n \ge 1$, let $h = s_n - 1$. Then $X = \mathbb{P}^n(h/s_0, \dots, h/s_{n-1}, 1)$ is well-formed with Gorenstein canonical singularities and with Fano index h.

Nill gives this WPS and show it has largest Fano index among all well-formed WPS of dimension *n* with Gorenstein canonical singularities. **Conjecture.**

(ロ・ (理・ (ヨ・ (ヨ・)))
Preparation 000000	Canonical	proofs 0000000	terminal 0000	proofs ○○	Large volume

WPS $X = \mathbb{P}^{N}(a_{0}, ..., a_{N})$ is a toric variety. In order to show X is canonical (or terminal), it is enough to check that each coordinate point $[0 : \cdots : 0 : 1 : 0 : \cdots : 0]$ is canonical (or terminal).

- the torus *T* = (𝔅_m)^{N+1}/𝔅_m ≅ (𝔅_m)^N acts on *X* by scaling the variables,
- The locus where X is canonical (or terminal) is open and *T*-invariant. Thus if X is canonical (or terminal) at a point *q*, then X is also canonical (or terminal) at all points *p* such that *q* is in the closure of the *T*-orbit of *p*.

うして ふぼう メロット ロー うめの

Preparation 000000	Canonical	proofs 0000000	terminal 0000	proofs o●	Large volume

There are two tricks originated from Reid-Tai criterion to check a quotient singularity is canonical or terminal. Let $\frac{1}{r}(b_1, \ldots, b_s)$ be a well-formed quotient singularity

Lemma (ETW2021)

If some nonempty subset $I \subset \{b_1, ..., b_s\}$ has sum congruent to 0 mod *r* and $gcd(I \cup \{r\}) = 1$, then the singularity is canonical.

_emma (W2023)

If there is some subset $I \subset \{1, ..., s\}$ such that $\sum_{k \in I} b_k$ is a multiple of r, $gcd(\{b_k | k \in I\} \cup \{r\}) = 1$ and $gcd(b_i, r) = 1$ for some $i \in \{1, ..., s\} \setminus I$, then the singularity is terminal.

Preparation	Canonical	proofs	terminal	proofs	Large volume
000000	০০০০০০০০০০০০০	0000000	0000	o●	

There are two tricks originated from Reid-Tai criterion to check a quotient singularity is canonical or terminal. Let $\frac{1}{r}(b_1, \ldots, b_s)$ be a well-formed quotient singularity

Lemma (ETW2021)

If some nonempty subset $I \subset \{b_1, ..., b_s\}$ has sum congruent to 0 mod *r* and $gcd(I \cup \{r\}) = 1$, then the singularity is canonical.

Lemma (W2023)

If there is some subset $I \subset \{1, ..., s\}$ such that $\sum_{k \in I} b_k$ is a multiple of r, $gcd(\{b_k | k \in I\} \cup \{r\}) = 1$ and $gcd(b_i, r) = 1$ for some $i \in \{1, ..., s\} \setminus I$, then the singularity is terminal.

Let *X* be a Fano variety of dimension *n*. Define:

$$\operatorname{vol}(X) := \lim_{\ell \to \infty} h^0(X, -\ell K_X)/(\ell^n/n!)$$

which measures the asymptotic growth of the anti-plurigenera $h^0(X, -\ell K_X)$.

イロト 不得 トイヨト イヨト ヨー のくで

 $\operatorname{vol}(X) = (-K_X)^n$ for Fano varieties.

Preparation	Canonical	proofs	terminal	proofs	Large volume
	000000000000	0000000	0000	00	⊙oooooo

Let *X* be a Fano variety of dimension *n*. Define:

$$\operatorname{vol}(X) := \lim_{\ell \to \infty} h^0(X, -\ell K_X)/(\ell^n/n!)$$

which measures the asymptotic growth of the anti-plurigenera $h^0(X, -\ell K_X)$.

< ロ > < 同 > < 三 > < 三 > 、 三 > への < つ > <

 $vol(X) = (-K_X)^n$ for Fano varieties.

Preparation	Canonical	proofs	terminal	proofs	Large volume
000000	000000000000	0000000	0000	00	

- (Kasprzyk) Pⁿ(1, 1, (s_{n-1} − 1)/s_{n-2}, ..., (s_{n-1} − 1)/s₀) is terminal and has very large volume Sⁿ_{n-1}/(s_{n-1}−1)ⁿ⁻².
 conjecture: Largest among the terminal Fano varieties of dimension *n*.

うして ふぼう メロット ロー うめの

Preparation	Canonical	proofs	terminal	proofs	Large volume
000000	000000000000	0000000	0000	00	

- Among all *n*-dimensional canonical toric Fano varieties for $n \ge 4$, $\mathbb{P}^{n}(1, 1, 2(s_{n} - 1)/s_{n-1}, \dots, 2(s_{n} - 1)/s_{1})$ has the largest volume $2(s_{n} - 1)^{2}$. (Balletti, Kasprzyk, and Nill)
- (Kasprzyk) Pⁿ(1, 1, (s_{n-1} − 1)/s_{n-2}, ..., (s_{n-1} − 1)/s₀) is terminal and has very large volume ^{sⁿ_{n-1}}/_{(s_{n-1}−1)ⁿ⁻²}. conjecture: Largest among the terminal Fano varieties of dimension *n*.

うして ふぼう メロット ロー うめの

Preparation	Canonical	proofs	terminal	proofs	Large volume
000000	০০০০০০০০০০০০০০	0000000	0000	00	

Gorenstein terminal

(Kasprzyk) Odd dimensions:

- ℙ⁵(4,3,2,1,1,1), volume 10368,
- **P**⁷(28, 21, 14, 12, 6, 1, 1, 1), volume 49787136,
- P⁹(1204, 903, 602, 516, 258, 84, 42, 1, 1, 1) volume
 340424620687872.

They are the largest volume among all Gorenstin terminal WPS in dimension n = 5, 7, 9.

ういつ 川田 くま くま くち くち くう

Preparation	Canonical	proofs	terminal	proofs	
					000000

generalize to higher dimensions

For each odd integer $n = 2k + 1 \ge 5$, where integer $k \ge 2$, let

•
$$h = 2s_0s_1\cdots s_{k-1} = 2(s_k - 1),$$

•
$$a_0 = a_1 = a_2 = 1$$
,

- $a_{2i-1} = \frac{h}{2s_{k+1-i}} = s_0 s_1 \cdots \widehat{s_{k+1-i}} \cdots s_{k-1}$ for $2 \le i \le k-1$ when $k \ge 3$,
- $a_{2i} = \frac{h}{s_{k+1-i}} = 2s_0s_1\cdots \widehat{s_{k+1-i}}\cdots s_{k-1}$ for $2 \le i \le k-1$ when $k \ge 3$,

•
$$a_{n-2} = h/6 = s_0 s_2 \cdots s_{k-1}$$
,

•
$$a_{n-1} = h/4 = s_1 s_2 \cdots s_{k-1}$$
,

• $a_n = h/3 = 2s_0s_2\cdots s_{k-1}$.

Preparation	Canonical	proofs	terminal	proofs	
					000000

generalize to higher dimensions

For each odd integer $n = 2k + 1 \ge 5$, where integer $k \ge 2$, let

•
$$h = 2s_0s_1\cdots s_{k-1} = 2(s_k - 1),$$

•
$$a_0 = a_1 = a_2 = 1$$
,

- $a_{2i-1} = \frac{h}{2s_{k+1-i}} = s_0 s_1 \cdots \widehat{s_{k+1-i}} \cdots s_{k-1}$ for $2 \le i \le k-1$ when $k \ge 3$,
- $a_{2i} = \frac{h}{s_{k+1-i}} = 2s_0s_1\cdots \widehat{s_{k+1-i}}\cdots s_{k-1}$ for $2 \le i \le k-1$ when $k \ge 3$,

メロシス 理シス ヨシス ヨシー ヨー ろくぐ

•
$$a_{n-2} = h/6 = s_0 s_2 \cdots s_{k-1},$$

•
$$a_{n-1} = h/4 = s_1 s_2 \cdots s_{k-1},$$

• $a_n = h/3 = 2s_0s_2\cdots s_{k-1}$.

Preparation	Canonical	proofs	terminal	proofs	
					000000

generalize to higher dimensions

For each odd integer $n = 2k + 1 \ge 5$, where integer $k \ge 2$, let

• $h = 2s_0s_1\cdots s_{k-1} = 2(s_k - 1),$

•
$$a_0 = a_1 = a_2 = 1$$
,

- $a_{2i-1} = \frac{h}{2s_{k+1-i}} = s_0 s_1 \cdots \widehat{s_{k+1-i}} \cdots s_{k-1}$ for $2 \le i \le k-1$ when $k \ge 3$,
- $a_{2i} = \frac{h}{s_{k+1-i}} = 2s_0s_1 \cdots \widehat{s_{k+1-i}} \cdots s_{k-1}$ for $2 \le i \le k-1$ when $k \ge 3$,

•
$$a_{n-2} = h/6 = s_0 s_2 \cdots s_{k-1}$$
,

- $a_{n-1} = h/4 = s_1 s_2 \cdots s_{k-1},$
- $a_n = h/3 = 2s_0s_2\cdots s_{k-1}$.

Preparation Canonical proofs terminal proofs Large volume

generalize to higher dimensions

For each odd integer $n = 2k + 1 \ge 5$, where integer $k \ge 2$, let

• $h = 2s_0s_1\cdots s_{k-1} = 2(s_k - 1),$

•
$$a_0 = a_1 = a_2 = 1$$
,

- $a_{2i-1} = \frac{h}{2s_{k+1-i}} = s_0 s_1 \cdots \widehat{s_{k+1-i}} \cdots s_{k-1}$ for $2 \le i \le k-1$ when $k \ge 3$,
- $a_{2i} = \frac{h}{s_{k+1-i}} = 2s_0s_1\cdots \widehat{s_{k+1-i}}\cdots s_{k-1}$ for $2 \le i \le k-1$ when $k \ge 3$,

•
$$a_{n-2} = h/6 = s_0 s_2 \cdots s_{k-1},$$

• $a_{n-1} = h/4 = s_1 s_2 \cdots s_{k-1},$

•
$$a_n = h/3 = 2s_0s_2\cdots s_{k-1}$$
.

Preparation	Canonical	proofs	terminal	proofs	Large volume
	০০০০০০০০০০০০০০	0000000	0000	00	oooo●o

Theorem (Wang2023)

Then Gorenstein terminal WPS $X = \mathbb{P}^n(a_n, \ldots, a_0)$ has volume $(-K_X)^n = 2^{\frac{n+1}{2}}(s_{\frac{n-1}{2}} - 1)^4.$

Conjecture: it has the largest volume among all Fano n-folds ($n \ge 5$ odd) with Gorenstein terminal singularities.

イロト 不同 トイヨト イヨト ヨー のへで

Preparation	Canonical	proofs	terminal	proofs	Large volume
	ooooooooooooo	0000000	0000	00	oooo●o

Theorem (Wang2023)

Then Gorenstein terminal WPS $X = \mathbb{P}^n(a_n, \ldots, a_0)$ has volume $(-K_X)^n = 2^{\frac{n+1}{2}}(s_{\frac{n-1}{2}} - 1)^4.$

Conjecture: it has the largest volume among all Fano *n*-folds $(n \ge 5 \text{ odd})$ with Gorenstein terminal singularities.

Preparation	Canonical	proofs	terminal	proofs	Large volume
000000	0000000000000	0000000	0000	00	

Thank you!