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@ A normal projective variety X is Fano if the anti-canonical
divisor —Ky is ample.

@ The Fano index of X is:
FI(X) := max{m € Z-o|—Kx ~g mA, where Ais a Weil divisor}.

Kobayashi and Ochial: P" has the biggest Fano index n+ 1
among all smooth Fano varieties. —Kpn = (n+ 1)O(1)
@ Q-Fano variety:
Fano variety
only terminal Q—factorial singularities;
Picard number is one
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Prokhorov: for a Q—Fano threefold X
@ the Fano index belongs to {1,...,11,13,17,19}.
@ FI(X) =19 «— X ~P3(7,5,4,3);
—Kx =0O(7+5+4+3)=0(19) and O(1) is Weil divisor.
@ FI(X) =17 < X ~P3(7,5,3,2)
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examples

Prokhorov: for a Q—Fano threefold X
@ the Fano index belongs to {1,...,11,13,17,19}.
@ FI(X) =19 «— X ~P3(7,5,4,3);
—Kx =0O(7+5+4+3)=0(19) and O(1) is Weil divisor.
@ FI(X) =17 < X ~P3(7,5,3,2)
—Kx=0(7T+5+3+2)=0(17).
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Weighted Projective Spaces

@ Forag,...,ay € Z~o,
the WPS X = PN(ay, ..., ay) is the quotient variety
(ANt1\ 0)/G,, where the multiplicative group G, acts by
t(xo, ..., xn) = (t%xo, ..., 13N XN).

@ WPS X is called well-formed
<= analogous quotient stack [(A"! — 0)/Gp] has trivial
stabilizer group in codimension 1.
<= gcd(ag,...,a;,...,an) = 1 foreach i.
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well-formed WPS

X is well-formed WPS
@ O(c): the sheaf associated to a Weil divisor on X for an

integer c.
@ O(c) is aline bundle <= every weight a; is a factor of c.
@ the canonical divisor Ky = O(—ap — - - - — an).

@ a Weil divisor is ample if some positive multiple of it is an
ample Cartier divisor.

@ the ample Weil divisor O(1) has volume -

ap---an’
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Reid-Tai criterion

@ The group of rth roots of unity u, acts on affine space A®
by ((t,.... ts) = (¢Oty, ..., Cbsts).

@ Quotient AS/u, is a cyclic quotient singularity of type
‘F(b1, ..., bs).

@ Assume thatgcd(r,b1,...,5,-,...,bs) =1foralli=1,...,s
( this description is well-formed).
Then the quotient singularity is canonical (resp. terminal)

S
=) themodr>r
k=1

(resp.>r)forallt=1,...,r—1.
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Sylvester’s sequence

So=2,and sp =S, 1(Sp—1 — 1)+ 1forn>1.
First few terms: 2,3,7,43,1807.

@ s,>22"" forall n, grows doubly exponential with respect
to n.

@ s, =5Sy---Sp—1+ 1, hence pairwise coprime.
1,1 1 1
[+ % + = 4 ... =1 —

Sp_1 sp—1°
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Canonical singularities

Lower dimensions

Del Pezzo surface X = IP?(3,2, 1) has Fano index 6 which is
the largest Fano index among all weighted projective planes
with canonical singularities (Brown and Kasprzyk).

| show the result in greater generality:

Proposition (Wang2023)
Among all canonical del Pezzo surfaces, the WPS
X =P?(3,2,1) has the largest Fano index 6.
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with canonical singularities (Averkov, Kasprzyk, Lehmann,
Nill).
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@ n=23, X =P3(33,22,6,5) has Fano index 66.
It is the largest Fano index among all WPS of dimension 3
with canonical singularities (Averkov, Kasprzyk, Lehmann,
Nill).

@ n=4, X =P*1743,1162,498, 42,41) has Fano index
3486.
It is largest Fano index among all WPS of dimension 4 with
canonical singularities (Kasprzyk).
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generalize to higher dimensions

Theorem (Wang2023)
For each integer n > 2, let
@ h=(sp1 —1)(2sp1 —3),
@ ai=h/s,_jfor2<i<n,
@ a1 =8,_1—1anday = s,_1 — 2.
Then the WPS
X=P"ap,...,a) =P"(h/sg,...,h/Sn_2,5n_1—1,8,_1—2) is
well-formed with canonical singularities and with Fano index h.

Conjecture: this is the example of the largest possible Fano
index among all Fano n—folds with canonical singularities.
True for dim = 2
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@ n=2 X ="P%3,21), FI(X) =
en=3X= IP>3(332265)F(X)—66,
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@ n=2,X=0P?%3,21),FI(X) =6,

@ n=3, X =P3(33,22,6,5), FI(X) = 66,

@ n=4, X =P*(1743,1162,498,42,41), FI(X) = 3486.
Let h, = (sn — 1)(2sn, — 3). We have h = h,_; above.
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Index of Calabi-Yau varieties

A normal projective variety X is Calabi-Yau if its canonical
divisor Kx ~q O.
The index of X is the smallest positive integer m with mKy ~ 0.

@ A smooth CY surface of index 6 : a "bielliptic" surface
(E1 x Ez)/us, where E; is a smooth elliptic curve.

@ A smooth CY 3-fold of index 66 : (Z x E)/uges, Where Z is
a smooth K3 surface.

Calabi-Yau pair (X, D):
a normal projective variety X,
an effective Q-divisor D on X such that Kx + D ~q 0.
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b € Z~y), and index m.
The (global) index-1 cover of (X, D) is a projective variety X’
with canonical Gorenstein singularities s.t. Kx: ~ 0.
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Klt Calabi-Yau pairs with standard coefficients

(X, D): a kit Calabi-Yau pair with standard coefficients (1 — 15,

b € Z~y), and index m.
The (global) index-1 cover of (X, D) is a projective variety X’
with canonical Gorenstein singularities s.t. Kx: ~ 0.

Here (X, D) is the quotient of X’ by an action of the cyclic group
wm such that um, acts faithfully on H(Y, Kx/) = C. (In dim 2,
purely non-symplectic action)

m: X = X, Ky = 7*(Kx + D).
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Klt CY pair in dim. 1 of the largest index

The unique kit CY pair of index 6: (P', 3p1 + 2po + 2p3).
Index cover X’ is the unique elliptic curve C/Z[(] over C, where
¢ is a cubic root of unity. Kx: = 7*(Kp1 + 5p1 + 502 + 23).
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Calabi-Yau variety with small volume

For n € Z>o, let hp = (sn — 1)(2s, — 3) and d = 2s;, — 2, the
hypersurface )/<,’7\n C P(hn/so, - - h,,/s,, 1,80 — 1 ,Sn— 2)
defined by X2 + x3 + -+ + x5 1 + x5+ xpxg,; = 0 has
vol(OX, (1)) < 1/22".

It is the conjecturally minimum volume among all canonical
Calabi-Yau n-folds with an ample Weil divisor O(1). (ETW
2021)
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variables which is described by a matrix A = (&j);j—1,..n. The
potential is called invertible if A is invertible which determines
a hypersurface in a WPS.
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Mirror Symmetry

A potential W = "7, T]7, x™ is a sum of n monomials in n
variables which is described by a matrix A = (&j);j—1,..n. The
potential is called invertible if A is invertible which determines
a hypersurface in a WPS.

@ charge g;: the sum of the entries of the i—th row of A~1,
@ d: the least common denominator of g; and w; := dg;,
@ W = 0 defines a degree d hypersurface in P(wy, ..., wy).

Let W be the potential described by the transpose matrix of A.

The hypersurfaces defined by W = 0 and W =0 are
Berglund-Hiibsch-Krawitz (BHK) mirror to each other.
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(BHK) mirror

W g+ 4+ + x5+ x3 4 xox?
2 2
3 3
transpose
—
d—1 d—1 1
1 o} d

Sp—1

W:xE+x3+- +x7 + x8 Xy + x2
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Forne€ Z>o, hp=(sn—1)(2sn —3),d =28, —2 =25y - - - Sp_1
@ The hypersurface X}, C IP’(d/so,.. d/sn 1,1,1) defined
byx§+x1~°’+-~+xs"11 + X8 Xpy1 + x4, =0is
quasi-smooth of dimension n, canonlcal, and has Ky, ~ 0;
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quasi-smooth of dimension n, canonlcal and has Ky, ~ 0;
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Forne€ Z>o, hp=(sn—1)(2sn —3),d =28, —2 =25y - - - Sp_1
@ The hypersurface X, C P(d/sy,...,d/sp_1,1,1) defined

by X2+ X3+ + X" + X0 Xt +x9,, =01is

quasi-smooth of dimension n, canonical, and has Ky, ~ 0;

e X;_is the Berglund-Hubsch-Krawitz (BHK) mirror of X'.

mirror.
XYy & X
n

There is a easy combinatorial way to compute big cyclic group
action on the hypersurface defined by a potential.
@ Lip, acts P(d/807~--7d/sn—17171) by C[XO R Xn+1] =

[/ @ - (AN -z (A0t s (M2 ],

@ X' is invariant under this action. The quotient of X’ by pp,

gives a kit Calabi-Yau pair of large index hj,.

By > 22" O vol < 4 /22
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Calabi-Yau pairs of large index (simplified description)

Theorem (ETW 2022)
For an integer n > 2, let
@ X =P"(d"~") d—1,1) with d = 2s, — 2 and coordinates
Vi, Ynt1s
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Calabi-Yau pairs of large index (simplified description)

Theorem (ETW 2022)
For an integer n > 2, let
@ X =P"(d"~") d—1,1) with d = 2s, — 2 and coordinates
Vi, Ynt1s
@ divisor D ={y;=0} on X for1 <i<n;
@ divisor Dy = {y1 + - + Yn_1 + Yn¥nt1 er,‘ir1 =0};
e Dp_q + d 1Dn

Sp—1

[~ D:1D0+%D1_|_.‘._|_
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Calabi-Yau pairs of large index (simplified description)

Theorem (ETW 2022)
For an integer n > 2, let
@ X =P"(d"", d—1,1) with d = 2s, — 2 and coordinates
V5.5 Yni1s
@ divisor D ={y; =0} on X for1 <i<n;
® divisor Do = {y1 + -+ ¥n—1 + Yn¥ns1 + Y2,y = 0},

Sp_1—1

© D=1Do+ 54D+ +2—D, 1 + §5Dn.

Then (X, D) is a kit Calabi-Yau pair of dimension n with
standard coefficients of index h, = (sp — 1)(2s, — 3) > 22",

Conjecture: this is the example of largest index.
True for dim= 2.
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Dimension 2

(X,D) = (P?(12,11,1), Do + 2Dy + 19D,).
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Dimension 2

(X,D) = (P2(12,11,1), 5 Do + 2Dy + 19Dy).

Index-1 cover:
X{, C P(6,4,1,1) given by x& + x? + x}'x3 + x}2 = 0 acted by

1466-
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Dimension 2

(X,D) = (P2(12,11,1), 5 Do + 2Dy + 19Dy).

Index-1 cover:
X{, C P(6,4,1,1) given by x& + x? + x}'x3 + x}2 = 0 acted by
166

Xis C P(33,22,6,5) given by x2 + x3 + x}" + xpx]2 = 0
X1,2 mirror, Yé\e

66 is conjecturally largest Fano index in dimension 3.
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Proposition (Wang2023)
Among all canonical del Pezzo surfaces, the WPS
X =P?(3,2,1) has the largest Fano index 6.

Fano index of P?(3,2,1)is3+2+1 =6.
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Lemma (1)

Let X be a smooth projective surface and Y be the blow-up of
X at a point. Then Ky is always primitive, i.e., then there exists
no element A € Pic(Y) such that Ky ~g mA for some integer
m> 2.
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Proof: We have Ky - E = —1, where E is the exceptional divisor
of the blow up.
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Let X be a smooth projective surface and Y be the blow-up of
X at a point. Then Ky is always primitive, i.e., then there exists
no element A € Pic(Y) such that Ky ~g mA for some integer
m> 2.

Proof: We have Ky - E = —1, where E is the exceptional divisor
of the blow up.
Ky ~g mA for some positive integer m and A € Pic(Y)

i3
m(A-E)=-1.
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Lemma (1)

Let X be a smooth projective surface and Y be the blow-up of
X at a point. Then Ky is always primitive, i.e., then there exists
no element A € Pic(Y) such that Ky ~g mA for some integer
m> 2.

Proof: We have Ky - E = —1, where E is the exceptional divisor
of the blow up.

Ky ~g mA for some positive integer m and A € Pic(Y)

Y

m(A-E)=-1.

Y is smooth = A- E is an integer = m = 1.



[e]e] lele]e]e)

For a canonical del Pezzo surface S with Picard number one,
the Fano index FI(S) < 6.
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For a canonical del Pezzo surface S with Picard number one,
the Fano index FI(S) < 6.

Idea: Use classification of canonical (equivalent to Gorenstein
in dimension 2) del Pezzo surfaces S with Picard number one,
and canonical volume (—Ks)2. (Miyanishi, Zhang)
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@ Assume that —Ks ~g mA for some integer m > 0 and
A e CI(S).

@ Similar analysis for each class.
When S has singularity of 2A; + As, we have (—Ks)? = 4
and CI(S)/Pic(S) = Z/4Z ¢ Z /2.
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[e]e]e] le]ele)

Sketchs:

@ Assume that —Ks ~g mA for some integer m > 0 and
A e CI(S).

@ Similar analysis for each class.
When S has singularity of 2A; + As, we have (—Ks)? = 4
and CI(S)/Pic(S) = Z/4Z ¢ Z /2.
= 4A € Pic(S) and (—Ks)? = T (4A)2.
= mP = (‘;'j\fz and (4A)? ¢ Z since 4A is Cartier.
= m<6orm=_8.
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Note that Y can be obtained by several blows up of points
on smooth surfaces starting with P2.
We get Contradiction by Lemma (1).
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0000e00

@ only need to show that m cannot be 8.
Let p: Y — S be the minimal resolution of S.
=Ky = p*Kg and p*(4A) € Pic(Y).
If —Ks ~Q 8A, then —Ky ~Q 2p*(4A)
Note that Y can be obtained by several blows up of points
on smooth surfaces starting with P2.
We get Contradiction by Lemma (1).

@ Similar arguments if S has other singularity.



terminal proofs

0000080

For a canonical del Pezzo surfaces Z, the Fano index
FI(Z) < 6.



terminal proofs

0000080

For a canonical del Pezzo surfaces Z, the Fano index
FI(Z) < 6.

Sketch of proof:

@ there is a contraction = : Z — S, where S is a canonical
del Pezzo surfaces with Picard rank one or two (Miyanishi,
Zhang).
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For a canonical del Pezzo surfaces Z, the Fano index
FI(Z) < 6.

Sketch of proof:

@ there is a contraction = : Z — S, where S is a canonical
del Pezzo surfaces with Picard rank one or two (Miyanishi,
Zhang).

@ Kz = m*(Ks) + E, where E is a linear combination of
exceptional divisors with integer coefficients
= W*(Kz) = KS-
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0000080

For a canonical del Pezzo surfaces Z, the Fano index
FI(Z) < 6.

Sketch of proof:

@ there is a contraction = : Z — S, where S is a canonical
del Pezzo surfaces with Picard rank one or two (Miyanishi,
Zhang).

@ Kz = m*(Ks) + E, where E is a linear combination of
exceptional divisors with integer coefficients
= m(Kz) = Ks.
@ FI(Z) > 6
= —Kz ~g mAfor some A € CI(Z) and m > 6
= —Ks ~g mn.(A) with 7, (A) € CI(S)
= FI(S) > 6.
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rank two.
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By Lemma (2), we only need to show FI(S) < 6 if S has Picard
rank two. We use the following results:

@ (Ks)? < 9. (Miyanishi, Zhang)

e if Siis not smooth P! x P!, all the possible singularity types
that S could have are given by Miyanishi and Zhang as
follows: 6A1, 4A1 + As, 4A1, 2A1 + D4, 2A1 + Ds, 2As3,

A3z + Dy, D4, Dg, Dy.
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By Lemma (2), we only need to show FI(S) < 6 if S has Picard
rank two. We use the following results:

@ (Ks)? < 9. (Miyanishi, Zhang)

e if Siis not smooth P! x P!, all the possible singularity types
that S could have are given by Miyanishi and Zhang as
follows: 6A1, 4A1 + As, 4A1, 2A1 + D4, 2A1 + Ds, 2As3,

A3 + Dy, Dy, D6, D;.

@ Note the local class group of A,, Dn(n even) and Dy(n odd)
are Z/(n+1)Z, Z/2Z & Z/2Z and Z/4Z respectively
(Lipman1969).
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By Lemma (2), we only need to show FI(S) < 6 if S has Picard
rank two. We use the following results:

@ (Ks)? < 9. (Miyanishi, Zhang)

e if Siis not smooth P! x P!, all the possible singularity types
that S could have are given by Miyanishi and Zhang as
follows: 6A1, 4A1 + As, 4A1, 2A1 + D4, 2A1 + Ds, 2As3,

A3z + Dy, D4, Dg, Dy.

@ Note the local class group of A,, Dn(n even) and Dy(n odd)
are Z/(n+1)Z, Z/2Z & Z/2Z and Z/4Z respectively
(Lipman1969).

Similar arguments as the case of Picard number one: assume
—Ks ~g mA for some integer m > 0 and A € CI(S), we show
m < 6.
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Terminal singularities

Lower dimensions
@ n=23, X =P%7,5,3,2) has Fano index 17.
It is the second largest Fano index for all Q—Fano
threefolds. FI(P%(7,5,4,3)) = 19 (Prokhorov).
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Terminal singularities

Lower dimensions

@ n=23, X =P%7,5,3,2) has Fano index 17.
It is the second largest Fano index for all Q—Fano
threefolds. FI(P3(7,5,4,3)) = 19 (Prokhorov).

e n=4,X= IP’4(430,287, 123,21,20) has Fano index 881.
It is the largest Fano index among all well-formed WPS
with terminal singularities in dimension 4 (Brown,
Kasprzyk)



generalize to higher dimensions

Theorem (Wang2023)
For each integer n > 3, let
© ag=3(sp—1—1)—1,
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Theorem (Wang2023)
For each integer n > 3, let
® ag=}(sp_1—1)—1,
© a; = 3(sp1— 1),
@ a = J(sp- 1—1)Mfor2</<n—1

© an=3(3(sn—1 —1)(Sn—1 —2) = 1)),

.




generalize to higher dimensions

Theorem (Wang2023)
For each integer n > 3, let
® ag=}(sp_1—1)—1,
© a; = 3(sp1— 1),
@ a = J(sp- 1—1)Mfor2</<n—1

°an—2( (Sn—1— 1)(Sn—1*2)*1));
Then X =P"(ap,...,ay) is well- formed with terminal

singularities and W/th Fano index } %(sp—1 —1)2 — 1. In particular,

FI(X) > 22",

.




e n=23,X="%7,5,3,2), FI(X) = 17,



e n=23, X =0P%7,5,3,2), FI(X) = 17,
e n=4, X =P*(430,287,123,21, 20), FI(X) = 881.
Conjecture: this is the example of the largest possible Fano

index among all Fano n—folds (n > 4) with terminal
singularities.



Gorenstein

For each integern> 1, leth= s, — 1.
Then X =P"(h/sy,...,h/s,_1,1) is well-formed with
Gorenstein canonical singularities and with Fano index h.

Nill gives this WPS and show it has largest Fano index among
all well-formed WPS of dimension n with Gorenstein canonical
singularities.



Gorenstein

For each integern> 1, leth= s, — 1.
Then X =P"(h/sy,...,h/s,_1,1) is well-formed with
Gorenstein canonical singularities and with Fano index h.

Nill gives this WPS and show it has largest Fano index among
all well-formed WPS of dimension n with Gorenstein canonical
singularities.
Conjecture.



terminal

WPS X = PN(ay, ..., ay) is a toric variety. In order to show X is
canonical (or terminal), it is enough to check that each
coordinate point [0 :---:0:1:0:---:0]is canonical (or
terminal).

@ thetorus T = (Gp)N*t1 /Gy = (Gm)N acts on X by scaling
the variables,

@ The locus where X is canonical (or terminal) is open and
T-invariant. Thus if X is canonical (or terminal) at a point
g, then X is also canonical (or terminal) at all points p such
that g is in the closure of the T-orbit of p.



There are two tricks originated from Reid-Tai criterion to check
a quotient singularitiy is canonical or terminal.
Let }(b1 ,...,bs) be a well-formed quotient singularity

Lemma (ETW2021)

If some nonempty subset | C {bs, ..., bs} has sum congruent to
0 mod r and ged(/U {r}) = 1, then the singularity is canonical. )

.



There are two tricks originated from Reid-Tai criterion to check
a quotient singularitiy is canonical or terminal.
Let }(b1 ,...,bs) be a well-formed quotient singularity

Lemma (ETW2021)

If some nonempty subset | C {bs, ..., bs} has sum congruent to
0 mod r and ged(/U {r}) = 1, then the singularity is canonical. )

Lemma (W2023)

If there is some subset | C {1,...,s} suchthat), by is a
multiple of r, gcd({bk|k € I} U{r}) =1 and ged(b;,r) =1 for
someic {1,...,s}\ [, then the singularity is terminal.
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Let X be a Fano variety of dimension n. Define:

vol(X) := lim hO(X, —¢Kx)/(£"/nt)
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which measures the asymptotic growth of the anti-plurigenera
(X, —£Kx).
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®00000

Let X be a Fano variety of dimension n. Define:

vol(X) := lim hO(X, —¢Kx)/(£"/nt)

{—r00

which measures the asymptotic growth of the anti-plurigenera
(X, —£Kx).

vol(X) = (—Kx)" for Fano varieties.
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@ Among all n—dimensional canonical toric Fano varieties for
n=>4,
P"(1,1,2(sp —1)/Sn_1,.-.,2(sn — 1)/s1)has the largest
volume 2(s, — 1)2. (Balletti, Kasprzyk, and Nill)
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@ Among all n—dimensional canonical toric Fano varieties for
n>4,
P"(1,1,2(sp —1)/Sn_1,.-.,2(sn — 1)/s1)has the largest
volume 2(s, — 1)2. (Balletti, Kasprzyk, and Nill)

o (Kasprzyk) P"(1,1,(sn—1 —1)/Sp-2,---,(Sn—1 — 1)/S0) is

n

q S
terminal and has very large volume W
—

conjecture: Largest among the terminal Fano varieties of
dimension n.
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Gorenstein terminal

(Kasprzyk)
Odd dimensions:
@ P5(4,3,2,1,1,1), volume 10368,
e P’(28,21,14,12,6,1,1,1), volume 49787136,
@ P°(1204,903,602,516,258,84,42,1,1,1) volume
340424620687872.

They are the largest volume among all Gorenstin terminal WPS
in dimension n=5,7,9.
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generalize to higher dimensions

For each odd integer n = 2k + 1 > 5, where integer k > 2, let
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@ ap=a=a=1,
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generalize to higher dimensions

For each odd integer n = 2k + 1 > 5, where integer k > 2, let
*) h:28031 © - Sk—1 :2(31( - 1):
@ ap=a=a=1,

R h
® Bi1= 35,
when k > 3,

:SoS1-~-.‘5ﬂ_1\_,'~-'Sk_1 for 2<i<k-1
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[e]e]e] lele]

generalize to higher dimensions

For each odd integer n = 2k + 1 > 5, where integer k > 2, let
*) h:28031 © - Sk—1 :2(31( - 1):
@ ap=a=a=1,

h — .
® i1 =g - =505t Sky1—j--Sk—1 for 2<i< k-1
when k > 3,
@ aj = L :28031-‘-.‘:ﬂ1\,;---3k,1 for 2<i<k-1

Sk1—

when k > I3
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[e]e]e] lele]

generalize to higher dimensions

For each odd integer n = 2k + 1 > 5, where integer k > 2, let
@ h= 28031 © - Sk—1 :2(31( - 1),
@ ap=a=a=1,

h — :

® i1 =g - =505t Sky1—j--Sk—1 for 2<i< k-1
when k > 3,

@ aj = Ser1 :28031-‘-.‘:ﬂ1\,;---8k,1 for 2<i<k-1
when k > 3,

@ ap p=h/6=255 S 1,
® ap1=h/4=5155k_1,
o an:h/3:23032-~sk_1.
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Theorem (Wang2023)

Then Gorenstein terminal WPS X = P"(ap, . .., ap) has volume
nt1 4
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Theorem (Wang2023)

Then Gorenstein terminal WPS X = P"(ap, . .., ap) has volume
nt1 4

(—K)" = 2" (501 — 1)

Conjecture: it has the largest volume among all Fano n—folds
(n > 5 odd) with Gorenstein terminal singularities.



Thank you!
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