# Fano varieties with extreme behavior 

Chengxi Wang<br>UCLA

Nov. 2023

- A normal projective variety $X$ is Fano if the anti-canonical divisor $-K_{X}$ is ample.
- A normal projective variety $X$ is Fano if the anti-canonical divisor $-K_{X}$ is ample.
- The Fano index of $X$ is:
$\operatorname{FI}(X):=\max \left\{m \in \mathbb{Z}_{>0} \mid-K_{X} \sim_{\mathbb{Q}} m A\right.$, where $A$ is a Weil divisor $\}$.
- A normal projective variety $X$ is Fano if the anti-canonical divisor $-K_{X}$ is ample.
- The Fano index of $X$ is:
$\operatorname{FI}(X):=\max \left\{m \in \mathbb{Z}_{>0} \mid-K_{X} \sim_{\mathbb{Q}} m A\right.$, where $A$ is a Weil divisor $\}$. Kobayashi and Ochial: $\mathbb{P}^{n}$ has the biggest Fano index $n+1$ among all smooth Fano varieties. $-K_{\mathbb{P}^{n}}=(n+1) \mathcal{O}(1)$
- A normal projective variety $X$ is Fano if the anti-canonical divisor $-K_{X}$ is ample.
- The Fano index of $X$ is:
$\operatorname{FI}(X):=\max \left\{m \in \mathbb{Z}_{>0} \mid-K_{X} \sim_{\mathbb{Q}} m A\right.$, where $A$ is a Weil divisor $\}$.
Kobayashi and Ochial: $\mathbb{P}^{n}$ has the biggest Fano index $n+1$ among all smooth Fano varieties. $-K_{\mathbb{P}^{n}}=(n+1) \mathcal{O}(1)$
- $\mathbb{Q}$-Fano variety:
- A normal projective variety $X$ is Fano if the anti-canonical divisor $-K_{X}$ is ample.
- The Fano index of $X$ is:
$\operatorname{FI}(X):=\max \left\{m \in \mathbb{Z}_{>0} \mid-K_{X} \sim_{\mathbb{Q}} m A\right.$, where $A$ is a Weil divisor $\}$.
Kobayashi and Ochial: $\mathbb{P}^{n}$ has the biggest Fano index $n+1$ among all smooth Fano varieties. $-K_{\mathbb{P}^{n}}=(n+1) \mathcal{O}(1)$
- $\mathbb{Q}$-Fano variety:

Fano variety

- A normal projective variety $X$ is Fano if the anti-canonical divisor $-K_{X}$ is ample.
- The Fano index of $X$ is:
$\operatorname{FI}(X):=\max \left\{m \in \mathbb{Z}_{>0} \mid-K_{X} \sim_{\mathbb{Q}} m A\right.$, where $A$ is a Weil divisor $\}$.
Kobayashi and Ochial: $\mathbb{P}^{n}$ has the biggest Fano index $n+1$ among all smooth Fano varieties. $-K_{\mathbb{P}^{n}}=(n+1) \mathcal{O}(1)$
- $\mathbb{Q}$-Fano variety:

Fano variety
only terminal $\mathbb{Q}$-factorial singularities;

- A normal projective variety $X$ is Fano if the anti-canonical divisor $-K_{X}$ is ample.
- The Fano index of $X$ is:
$\mathrm{FI}(X):=\max \left\{m \in \mathbb{Z}_{>0} \mid-K_{X} \sim_{\mathbb{Q}} m A\right.$, where $A$ is a Weil divisor $\}$.
Kobayashi and Ochial: $\mathbb{P}^{n}$ has the biggest Fano index $n+1$ among all smooth Fano varieties. $-K_{\mathbb{P}^{n}}=(n+1) \mathcal{O}(1)$
- $\mathbb{Q}$-Fano variety:

Fano variety
only terminal $\mathbb{Q}$-factorial singularities; Picard number is one

## examples

Prokhorov: for a $\mathbb{Q}$-Fano threefold $X$

## examples

Prokhorov: for a $\mathbb{Q}$-Fano threefold $X$

- the Fano index belongs to $\{1, \ldots, 11,13,17,19\}$.


## examples

Prokhorov: for a $\mathbb{Q}$-Fano threefold $X$

- the Fano index belongs to $\{1, \ldots, 11,13,17,19\}$.
- $\mathrm{FI}(X)=19 \Longleftrightarrow X \simeq \mathbb{P}^{3}(7,5,4,3)$;


## examples

Prokhorov: for a $\mathbb{Q}$-Fano threefold $X$

- the Fano index belongs to $\{1, \ldots, 11,13,17,19\}$.
- $\mathrm{FI}(X)=19 \Longleftrightarrow X \simeq \mathbb{P}^{3}(7,5,4,3)$;
$-K_{X}=\mathcal{O}(7+5+4+3)=\mathcal{O}(19)$ and $\mathcal{O}(1)$ is Weil divisor.


## examples

Prokhorov: for a $\mathbb{Q}$-Fano threefold $X$

- the Fano index belongs to $\{1, \ldots, 11,13,17,19\}$.
- $\mathrm{FI}(X)=19 \Longleftrightarrow X \simeq \mathbb{P}^{3}(7,5,4,3)$;
$-K_{X}=\mathcal{O}(7+5+4+3)=\mathcal{O}(19)$ and $\mathcal{O}(1)$ is Weil divisor.
- $\mathrm{FI}(X)=17 \Longleftrightarrow X \simeq \mathbb{P}^{3}(7,5,3,2)$


## examples

Prokhorov: for a $\mathbb{Q}$-Fano threefold $X$

- the Fano index belongs to $\{1, \ldots, 11,13,17,19\}$.
- $\mathrm{FI}(X)=19 \Longleftrightarrow X \simeq \mathbb{P}^{3}(7,5,4,3)$;
$-K_{X}=\mathcal{O}(7+5+4+3)=\mathcal{O}(19)$ and $\mathcal{O}(1)$ is Weil divisor.
- $\mathrm{FI}(X)=17 \Longleftrightarrow X \simeq \mathbb{P}^{3}(7,5,3,2)$
$-K_{X}=\mathcal{O}(7+5+3+2)=\mathcal{O}(17)$.


## Weighted Projective Spaces

- For $a_{0}, \ldots, a_{N} \in \mathbb{Z}_{>0}$,


## Weighted Projective Spaces

- For $a_{0}, \ldots, a_{N} \in \mathbb{Z}_{>0}$,
the WPS $X=\mathbb{P}^{N}\left(a_{0}, \ldots, a_{N}\right)$ is the quotient variety $\left(\mathbb{A}^{N+1} \backslash 0\right) / \mathbb{G}_{m}$, where the multiplicative group $\mathbb{G}_{m}$ acts by $t\left(x_{0}, \ldots, x_{N}\right)=\left(t^{a_{0}} x_{0}, \ldots, t^{a_{N}} x_{N}\right)$.


## Weighted Projective Spaces

- For $a_{0}, \ldots, a_{N} \in \mathbb{Z}_{>0}$,
the WPS $X=\mathbb{P}^{N}\left(a_{0}, \ldots, a_{N}\right)$ is the quotient variety $\left(\mathbb{A}^{N+1} \backslash 0\right) / \mathbb{G}_{m}$, where the multiplicative group $\mathbb{G}_{m}$ acts by $t\left(x_{0}, \ldots, x_{N}\right)=\left(t^{a_{0}} x_{0}, \ldots, t^{a_{N}} x_{N}\right)$.
- WPS $X$ is called well-formed


## Weighted Projective Spaces

- For $a_{0}, \ldots, a_{N} \in \mathbb{Z}_{>0}$,
the WPS $X=\mathbb{P}^{N}\left(a_{0}, \ldots, a_{N}\right)$ is the quotient variety $\left(\mathbb{A}^{N+1} \backslash 0\right) / \mathbb{G}_{m}$, where the multiplicative group $\mathbb{G}_{m}$ acts by $t\left(x_{0}, \ldots, x_{N}\right)=\left(t^{a_{0}} x_{0}, \ldots, t^{a_{N}} x_{N}\right)$.
- WPS $X$ is called well-formed $\Longleftrightarrow$ analogous quotient stack $\left[\left(A^{n+1}-0\right) / \mathbb{G}_{m}\right]$ has trivial stabilizer group in codimension 1.


## Weighted Projective Spaces

- For $a_{0}, \ldots, a_{N} \in \mathbb{Z}_{>0}$,
the WPS $X=\mathbb{P}^{N}\left(a_{0}, \ldots, a_{N}\right)$ is the quotient variety $\left(\mathbb{A}^{N+1} \backslash 0\right) / \mathbb{G}_{m}$, where the multiplicative group $\mathbb{G}_{m}$ acts by $t\left(x_{0}, \ldots, x_{N}\right)=\left(t^{a_{0}} x_{0}, \ldots, t^{a_{N}} x_{N}\right)$.
- WPS $X$ is called well-formed
$\Longleftrightarrow$ analogous quotient stack $\left[\left(A^{n+1}-0\right) / \mathbb{G}_{m}\right]$ has trivial stabilizer group in codimension 1.
$\Longleftrightarrow \operatorname{gcd}\left(a_{0}, \ldots, \widehat{a}_{i}, \ldots, a_{n}\right)=1$ for each $i$.


## well-formed WPS

$X$ is well-formed WPS

- $\mathcal{O}(c)$ : the sheaf associated to a Weil divisor on $X$ for an integer $c$.


## well-formed WPS

$X$ is well-formed WPS

- $\mathcal{O}(c)$ : the sheaf associated to a Weil divisor on $X$ for an integer $c$.
- $\mathcal{O}(c)$ is a line bundle $\Longleftrightarrow$ every weight $a_{i}$ is a factor of $c$.


## well-formed WPS

$X$ is well-formed WPS

- $\mathcal{O}(c)$ : the sheaf associated to a Weil divisor on $X$ for an integer $c$.
- $\mathcal{O}(c)$ is a line bundle $\Longleftrightarrow$ every weight $a_{i}$ is a factor of $c$.
- the canonical divisor $K_{X}=\mathcal{O}\left(-a_{0}-\cdots-a_{N}\right)$.


## well-formed WPS

$X$ is well-formed WPS

- $\mathcal{O}(c)$ : the sheaf associated to a Weil divisor on $X$ for an integer $c$.
- $\mathcal{O}(c)$ is a line bundle $\Longleftrightarrow$ every weight $a_{i}$ is a factor of $c$.
- the canonical divisor $K_{X}=\mathcal{O}\left(-a_{0}-\cdots-a_{N}\right)$.
- a Weil divisor is ample if some positive multiple of it is an ample Cartier divisor.


## well-formed WPS

$X$ is well-formed WPS

- $\mathcal{O}(c)$ : the sheaf associated to a Weil divisor on $X$ for an integer $c$.
- $\mathcal{O}(c)$ is a line bundle $\Longleftrightarrow$ every weight $a_{i}$ is a factor of $c$.
- the canonical divisor $K_{X}=\mathcal{O}\left(-a_{0}-\cdots-a_{N}\right)$.
- a Weil divisor is ample if some positive multiple of it is an ample Cartier divisor.
- the ample Weil divisor $\mathcal{O}(1)$ has volume $\frac{1}{a_{0} \cdots a_{N}}$.


## Reid-Tai criterion

## Theorem

- The group of rth roots of unity $\mu_{r}$ acts on affine space $\mathbb{A}^{s}$ by $\zeta\left(t_{1}, \ldots, t_{s}\right)=\left(\zeta^{b_{1}} t_{1}, \ldots, \zeta^{b_{s}} t_{s}\right)$.
- Quotient $\mathbb{A}^{s} / \mu_{r}$ is a cyclic quotient singularity of type $\frac{1}{r}\left(b_{1}, \ldots, b_{s}\right)$.
- Assume that $\operatorname{gcd}\left(r, b_{1}, \ldots, b_{i}, \ldots, b_{s}\right)=1$ for all $i=1, \ldots, s$ ( this description is well-formed).
Then the quotient singularity is canonical (resp. terminal)



## Reid-Tai criterion

## Theorem

- The group of rth roots of unity $\mu_{r}$ acts on affine space $\mathbb{A}^{s}$ by $\zeta\left(t_{1}, \ldots, t_{s}\right)=\left(\zeta^{b_{1}} t_{1}, \ldots, \zeta^{b_{s}} t_{s}\right)$.
- Quotient $\mathbb{A}^{s} / \mu_{r}$ is a cyclic quotient singularity of type $\frac{1}{r}\left(b_{1}, \ldots, b_{s}\right)$.
- Assume that $\operatorname{gcd}\left(r, b_{1}, \ldots, b_{i}, \ldots, b_{s}\right)=1$ for all $i=1$ ( this description is well-formed). Then the quotient singularity is canonical (resp. terminal)



## Reid-Tai criterion

## Theorem

- The group of rth roots of unity $\mu_{r}$ acts on affine space $\mathbb{A}^{s}$ by $\zeta\left(t_{1}, \ldots, t_{s}\right)=\left(\zeta^{b_{1}} t_{1}, \ldots, \zeta^{b_{s}} t_{s}\right)$.
- Quotient $\mathbb{A}^{s} / \mu_{r}$ is a cyclic quotient singularity of type $\frac{1}{r}\left(b_{1}, \ldots, b_{s}\right)$.
- Assume that $\operatorname{gcd}\left(r, b_{1}, \ldots, \widehat{b}_{i}, \ldots, b_{s}\right)=1$ for all $i=1, \ldots, s$ ( this description is well-formed).
Then the quotient singularity is canonical (resp. terminal)



## Reid-Tai criterion

## Theorem

- The group of rth roots of unity $\mu_{r}$ acts on affine space $\mathbb{A}^{s}$ by $\zeta\left(t_{1}, \ldots, t_{s}\right)=\left(\zeta^{b_{1}} t_{1}, \ldots, \zeta^{b_{s}} t_{s}\right)$.
- Quotient $\mathbb{A}^{s} / \mu_{r}$ is a cyclic quotient singularity of type $\frac{1}{r}\left(b_{1}, \ldots, b_{s}\right)$.
- Assume that $\operatorname{gcd}\left(r, b_{1}, \ldots, \widehat{b}_{i}, \ldots, b_{s}\right)=1$ for all $i=1, \ldots, s$ ( this description is well-formed).
Then the quotient singularity is canonical (resp. terminal)

$$
\Longleftrightarrow \sum_{k=1}^{s} t b_{k} \bmod r \geq r
$$

(resp. $>r$ ) for all $t=1, \ldots, r-1$.

## Sylvester's sequence

$s_{0}=2$, and $s_{n}=s_{n-1}\left(s_{n-1}-1\right)+1$ for $n \geq 1$.

## Sylvester's sequence

$s_{0}=2$, and $s_{n}=s_{n-1}\left(s_{n-1}-1\right)+1$ for $n \geq 1$.
First few terms: 2,3,7,43,1807.

## Sylvester's sequence

$s_{0}=2$, and $s_{n}=s_{n-1}\left(s_{n-1}-1\right)+1$ for $n \geq 1$.
First few terms: 2,3,7,43,1807.

- $s_{n}>2^{2^{n-1}}$ for all $n$,


## Sylvester's sequence

$s_{0}=2$, and $s_{n}=s_{n-1}\left(s_{n-1}-1\right)+1$ for $n \geq 1$.
First few terms: 2,3,7,43,1807.

- $s_{n}>2^{2^{n-1}}$ for all $n$, grows doubly exponential with respect to $n$.


## Sylvester's sequence

$s_{0}=2$, and $s_{n}=s_{n-1}\left(s_{n-1}-1\right)+1$ for $n \geq 1$.
First few terms: 2,3,7,43,1807.

- $s_{n}>2^{2^{n-1}}$ for all $n$, grows doubly exponential with respect to $n$.
- $s_{n}=s_{0} \cdots s_{n-1}+1$, hence pairwise coprime.


## Sylvester's sequence

$s_{0}=2$, and $s_{n}=s_{n-1}\left(s_{n-1}-1\right)+1$ for $n \geq 1$.
First few terms: 2,3,7,43,1807.

- $s_{n}>2^{2^{n-1}}$ for all $n$, grows doubly exponential with respect to $n$.
- $s_{n}=s_{0} \cdots s_{n-1}+1$, hence pairwise coprime.
- $\frac{1}{s_{0}}+\frac{1}{s_{1}}+\cdots+\frac{1}{s_{n-1}}=1-\frac{1}{s_{n}-1}$.


## Canonical singularities

Lower dimensions
Del Pezzo surface $X=\mathbb{P}^{2}(3,2,1)$ has Fano index 6
with canonical singularities (Brown and Kasprzyk).
I show the result in queater generalit.
Proposition (Wang2023)
Amona all canonical del Pezzo surfaces, the WPS $X=\mathbb{P}^{2}(3,2,1)$ has the largest Fano index 6.

## Canonical singularities

Lower dimensions
Del Pezzo surface $X=\mathbb{P}^{2}(3,2,1)$ has Fano index 6 which is the largest Fano index among all weighted projective planes with canonical singularities (Brown and Kasprzyk).

Proposition (Wang2023)
Amona all canonical del Pezzo surfaces, the WPS
$X=\mathbb{P}^{2}(3,2,1)$ has the largest Fano index 6.

## Canonical singularities

Lower dimensions
Del Pezzo surface $X=\mathbb{P}^{2}(3,2,1)$ has Fano index 6 which is the largest Fano index among all weighted projective planes with canonical singularities (Brown and Kasprzyk).
I show the result in greater generality:

## Proposition (Wang2023)

Among all canonical del Pezzo surfaces, the WPS $X=\mathbb{P}^{2}(3,2,1)$ has the largest Fano index 6.

- $n=3, X=\mathbb{P}^{3}(33,22,6,5)$ has Fano index 66.

canonical singularities (Kasprzyk).
- $n=3, X=\mathbb{P}^{3}(33,22,6,5)$ has Fano index 66. It is the largest Fano index among all WPS of dimension 3 with canonical singularities (Averkov, Kasprzyk, Lehmann, Nill).
- $n=3, X=\mathbb{P}^{3}(33,22,6,5)$ has Fano index 66. It is the largest Fano index among all WPS of dimension 3 with canonical singularities (Averkov, Kasprzyk, Lehmann, Nill).
- $n=4, X=\mathbb{P}^{4}(1743,1162,498,42,41)$ has Fano index 3486.
- $n=3, X=\mathbb{P}^{3}(33,22,6,5)$ has Fano index 66. It is the largest Fano index among all WPS of dimension 3 with canonical singularities (Averkov, Kasprzyk, Lehmann, Nill).
- $n=4, X=\mathbb{P}^{4}(1743,1162,498,42,41)$ has Fano index 3486.

It is largest Fano index among all WPS of dimension 4 with canonical singularities (Kasprzyk).

## generalize to higher dimensions

## Theorem (Wang2023)

For each integer $n \geq 2$, let

- $h=\left(s_{n-1}-1\right)\left(2 s_{n-1}-3\right)$,
- $a_{i}=h / s_{n-i}$ for $2 \leq i \leq n$,
- $a_{1}=s_{n-1}-1$ and $a_{0}=s_{n-1}-2$.

Then the WPS
$X=\mathbb{P}^{n}\left(a_{n}, \ldots, a_{0}\right)=\mathbb{P}^{n}\left(h / s_{0}, \ldots, h / s_{n-2}, s_{n-1}-1, s_{n-1}-2\right)$ is
well-formed with canonical singularities and with Fano index $h$.

## generalize to higher dimensions

## Theorem (Wang2023)

For each integer $n \geq 2$, let

- $h=\left(s_{n-1}-1\right)\left(2 s_{n-1}-3\right)$,
- $a_{i}=h / s_{n-i}$ for $2 \leq i \leq n$,
- $a_{1}=s_{n-1}-1$ and $a_{0}=s_{n-1}-2$.

Then the WPS
$X=\mathbb{P}^{n}\left(a_{n}, \ldots, a_{0}\right)=\mathbb{P}^{n}\left(h / s_{0}, \ldots, h / s_{n-2}, s_{n-1}-1, s_{n-1}-2\right)$ is
well-formed with canonical singularities and with Fano index $h$.

## generalize to higher dimensions

## Theorem (Wang2023)

For each integer $n \geq 2$, let

- $h=\left(s_{n-1}-1\right)\left(2 s_{n-1}-3\right)$,
- $a_{i}=h / s_{n-i}$ for $2 \leq i \leq n$,
- $a_{1}=s_{n-1}-1$ and $a_{0}=s_{n-1}-2$.

Then the WPS
$X=\mathbb{P}^{n}\left(a_{n}, \ldots, a_{0}\right)=\mathbb{P}^{n}\left(h / s_{0}, \ldots, h / s_{n-2}, s_{n-1}-1, s_{n-1}-2\right)$ is well-formed with canonical singularities and with Fano index h.

## generalize to higher dimensions

## Theorem (Wang2023)

For each integer $n \geq 2$, let

- $h=\left(s_{n-1}-1\right)\left(2 s_{n-1}-3\right)$,
- $a_{i}=h / s_{n-i}$ for $2 \leq i \leq n$,
- $a_{1}=s_{n-1}-1$ and $a_{0}=s_{n-1}-2$.

Then the WPS
$X=\mathbb{P}^{n}\left(a_{n}, \ldots, a_{0}\right)=\mathbb{P}^{n}\left(h / s_{0}, \ldots, h / s_{n-2}, s_{n-1}-1, s_{n-1}-2\right)$ is well-formed with canonical singularities and with Fano index $h$.

## generalize to higher dimensions

## Theorem (Wang2023)

For each integer $n \geq 2$, let

- $h=\left(s_{n-1}-1\right)\left(2 s_{n-1}-3\right)$,
- $a_{i}=h / s_{n-i}$ for $2 \leq i \leq n$,
- $a_{1}=s_{n-1}-1$ and $a_{0}=s_{n-1}-2$.

Then the WPS
$X=\mathbb{P}^{n}\left(a_{n}, \ldots, a_{0}\right)=\mathbb{P}^{n}\left(h / s_{0}, \ldots, h / s_{n-2}, s_{n-1}-1, s_{n-1}-2\right)$ is well-formed with canonical singularities and with Fano index $h$.

Conjecture: this is the example of the largest possible Fano index among all Fano $n$-folds with canonical singularities.

## generalize to higher dimensions

## Theorem (Wang2023)

For each integer $n \geq 2$, let

- $h=\left(s_{n-1}-1\right)\left(2 s_{n-1}-3\right)$,
- $a_{i}=h / s_{n-i}$ for $2 \leq i \leq n$,
- $a_{1}=s_{n-1}-1$ and $a_{0}=s_{n-1}-2$.

Then the WPS
$X=\mathbb{P}^{n}\left(a_{n}, \ldots, a_{0}\right)=\mathbb{P}^{n}\left(h / s_{0}, \ldots, h / s_{n-2}, s_{n-1}-1, s_{n-1}-2\right)$ is well-formed with canonical singularities and with Fano index $h$.

Conjecture: this is the example of the largest possible Fano index among all Fano $n$-folds with canonical singularities.
True for $\mathrm{dim}=2$

- $n=2, X=\mathbb{P}^{2}(3,2,1), \operatorname{FI}(X)=6$,
- $n=2, X=\mathbb{P}^{2}(3,2,1), \operatorname{FI}(X)=6$, - $n=3, X=\mathbb{P}^{3}(33,22,6,5), \operatorname{FI}(X)=66$,
- $n=2, X=\mathbb{P}^{2}(3,2,1), \operatorname{FI}(X)=6$,
- $n=3, X=\mathbb{P}^{3}(33,22,6,5), \operatorname{FI}(X)=66$,
- $n=4, X=\mathbb{P}^{4}(1743,1162,498,42,41), \operatorname{FI}(X)=3486$.

Let $h_{n}=\left(s_{n}-1\right)\left(2 s_{n}-3\right)$. We have $h=h_{n-1}$ above.

## Index of Calabi-Yau varieties

A normal projective variety $X$ is Calabi-Yau if its canonical divisor $K_{X} \sim \mathbb{Q} 0$.
The index of $X$ is the smallest positive integer $m$ with $m K_{X} \sim 0$.

- A smooth CY surface of index 6 : a "bielliptic" surface $\left(E_{1} \times E_{2}\right) / \mu_{6}$, where $E_{i}$ is a smooth elliptic curve.
- A smooth CY 3-fold of index $66:(Z \times E) / \mu_{66}$, where $Z$ is a smooth $K 3$ surface.

Calabi-Yau pair ( $X, D$ ):
a normal projective variety $X$, an effective $\mathbb{Q}$-divisor $D$ on $X$ such that $K_{X}+D \sim_{\mathbb{Q}} 0$.

## Klt Calabi-Yau pairs with standard coefficients

$(X, D)$ : a klt Calabi-Yau pair with standard coefficients $\left(1-\frac{1}{b}\right.$, $b \in \mathbb{Z}_{>0}$ ), and index $m$.

## Klt Calabi-Yau pairs with standard coefficients

$(X, D)$ : a klt Calabi-Yau pair with standard coefficients ( $1-\frac{1}{b}$, $b \in \mathbb{Z}_{>0}$ ), and index $m$.
The (global) index-1 cover of $(X, D)$ is a projective variety $X^{\prime}$ with canonical Gorenstein singularities s.t. $K_{X^{\prime}} \sim 0$.

## Klt Calabi-Yau pairs with standard coefficients

$(X, D)$ : a klt Calabi-Yau pair with standard coefficients ( $1-\frac{1}{b}$, $b \in \mathbb{Z}_{>0}$ ), and index $m$.
The (global) index-1 cover of $(X, D)$ is a projective variety $X^{\prime}$ with canonical Gorenstein singularities s.t. $K_{X^{\prime}} \sim 0$.

Here $(X, D)$ is the quotient of $X^{\prime}$ by an action of the cyclic group $\mu_{m}$ such that $\mu_{m}$ acts faithfully on $H^{0}\left(Y, K_{X^{\prime}}\right) \cong \mathbb{C}$. (In dim 2 , purely non-symplectic action)
$\pi: X^{\prime} \rightarrow X, K_{X^{\prime}}=\pi^{*}\left(K_{X}+D\right)$.

## Klt CY pair in dim. 1 of the largest index

The unique klt CY pair of index 6: $\left(\mathbb{P}^{1}, \frac{1}{2} p_{1}+\frac{2}{3} p_{2}+\frac{5}{6} p_{3}\right)$. Index cover $X^{\prime}$ is the unique elliptic curve $\mathbb{C} / \mathbb{Z}[\zeta]$ over $\mathbb{C}$, where $\zeta$ is a cubic root of unity. $K_{X^{\prime}}=\pi^{*}\left(K_{\mathbb{P} 1}+\frac{1}{2} p_{1}+\frac{2}{3} p_{2}+\frac{5}{6} p_{3}\right)$.


## Calabi-Yau variety with small volume

For $n \in \mathbb{Z}_{\geq 0}$, let $h_{n}=\left(s_{n}-1\right)\left(2 s_{n}-3\right)$ and $d=2 s_{n}-2$, the hypersurface $\widehat{X_{h_{n}}^{\prime}} \subset \mathbb{P}\left(h_{n} / s_{0}, \ldots, h_{n} / s_{n-1}, s_{n}-1, s_{n}-2\right)$ defined by $x_{0}^{2}+x_{1}^{3}+\cdots+x_{n-1}^{s_{n}-1}+x_{n}^{d-1}+x_{n} x_{n+1}^{d}=0$ has $\operatorname{vol}\left(\mathcal{O}_{\widehat{\hat{X}_{n}}}(1)\right)<1 / 2^{2^{n}}$.
It is the conjecturally minimum volume among all canonical Calabi-Yau $n$-folds with an ample Weil divisor $\mathcal{O}(1)$. (ETW 2021)

## Mirror Symmetry

A potential $W=\sum_{i=1}^{n} \prod_{i=1}^{n} x_{i}^{a_{j}}$ is a sum of $n$ monomials in $n$ variables which is described by a matrix $A=\left(a_{i j}\right)_{i, j=1, \ldots, n}$.

## Mirror Symmetry

A potential $W=\sum_{i=1}^{n} \prod_{i=1}^{n} x_{i}^{a_{i j}}$ is a sum of $n$ monomials in $n$ variables which is described by a matrix $A=\left(a_{i j}\right)_{i, j=1, \ldots, n}$. The potential is called invertible if $A$ is invertible which determines a hypersurface in a WPS.

## Mirror Symmetry

A potential $W=\sum_{i=1}^{n} \prod_{i=1}^{n} x_{i}^{a_{i j}}$ is a sum of $n$ monomials in $n$ variables which is described by a matrix $A=\left(a_{i j}\right)_{i, j=1, \ldots, n}$. The potential is called invertible if $A$ is invertible which determines a hypersurface in a WPS.

- charge $q_{i}$ : the sum of the entries of the $i$-th row of $A^{-1}$,


## Mirror Symmetry

A potential $W=\sum_{i=1}^{n} \prod_{i=1}^{n} x_{i}^{a_{i j}}$ is a sum of $n$ monomials in $n$ variables which is described by a matrix $A=\left(a_{i j}\right)_{i, j=1, \ldots, n}$. The potential is called invertible if $A$ is invertible which determines a hypersurface in a WPS.

- charge $q_{i}$ : the sum of the entries of the $i-$ th row of $A^{-1}$,
- $d$ : the least common denominator of $q_{i}$ and $w_{i}:=d q_{i}$,


## Mirror Symmetry

A potential $W=\sum_{i=1}^{n} \prod_{i=1}^{n} x_{i}^{a_{i j}}$ is a sum of $n$ monomials in $n$ variables which is described by a matrix $A=\left(a_{i j}\right)_{i, j=1, \ldots, n}$. The potential is called invertible if $A$ is invertible which determines a hypersurface in a WPS.

- charge $q_{i}$ : the sum of the entries of the $i-$ th row of $A^{-1}$,
- $d$ : the least common denominator of $q_{i}$ and $w_{i}:=d q_{i}$,
- $W=0$ defines a degree $d$ hypersurface in $\mathbb{P}\left(w_{1}, \ldots, w_{n}\right)$.


## Mirror Symmetry

A potential $W=\sum_{i=1}^{n} \prod_{i=1}^{n} x_{i}^{a_{j}}$ is a sum of $n$ monomials in $n$ variables which is described by a matrix $A=\left(a_{j j}\right)_{i, j=1, \ldots, n}$. The potential is called invertible if $A$ is invertible which determines a hypersurface in a WPS.

- charge $q_{i}$ : the sum of the entries of the $i-$ th row of $A^{-1}$,
- $d$ : the least common denominator of $q_{i}$ and $w_{i}:=d q_{i}$,
- $W=0$ defines a degree $d$ hypersurface in $\mathbb{P}\left(w_{1}, \ldots, w_{n}\right)$.

Let $\widehat{W}$ be the potential described by the transpose matrix of $A$.
The hypersurfaces defined by $W=0$ and $\widehat{W}=0$ are Berglund-Hübsch-Krawitz (BHK) mirror to each other.

## (BHK) mirror

$$
\begin{aligned}
& \widehat{W}: x_{0}^{2}+x_{1}^{3}+\cdots+x_{n-1}^{s_{n}-1}+x_{n}^{d-1}+x_{n} x_{n+1}^{d} \\
& \left(\begin{array}{cccc}
2 & & & \\
& 3 & & \\
& \ddots & \\
& & d-1 & \\
& & & d
\end{array}\right) \xrightarrow{\text { transpose }}\left(\begin{array}{ccccc}
2 & & & & \\
& 3 & & & \\
& & \ddots & & \\
& & d-1 & 1 \\
& & & & d
\end{array}\right) \\
& W: x_{0}^{2}+x_{1}^{3}+\cdots+x_{n-1}^{s_{n-1}}+x_{n}^{d-1} x_{n+1}+x_{n+1}^{d}
\end{aligned}
$$

For $n \in \mathbb{Z}_{\geq 0}, h_{n}=\left(s_{n}-1\right)\left(2 s_{n}-3\right), d=2 s_{n}-2=2 s_{0} \cdots s_{n-1}$

- The hypersurface $X_{d}^{\prime} \subset \mathbb{P}\left(d / s_{0}, \ldots, d / s_{n-1}, 1,1\right)$ defined by $x_{0}^{2}+x_{1}^{3}+\cdots+x_{n-1}^{s_{n-1}}+x_{n}^{d-1} x_{n+1}+x_{n+1}^{d}=0$ is quasi-smooth of dimension $n$, canonical, and has $K_{X^{\prime}} \sim 0$;

For $n \in \mathbb{Z}_{\geq 0}, h_{n}=\left(s_{n}-1\right)\left(2 s_{n}-3\right), d=2 s_{n}-2=2 s_{0} \cdots s_{n-1}$

- The hypersurface $X_{d}^{\prime} \subset \mathbb{P}\left(d / s_{0}, \ldots, d / s_{n-1}, 1,1\right)$ defined by $x_{0}^{2}+x_{1}^{3}+\cdots+x_{n-1}^{s_{n-1}}+x_{n}^{d-1} x_{n+1}+x_{n+1}^{d}=0$ is quasi-smooth of dimension $n$, canonical, and has $K_{X^{\prime}} \sim 0$;
- $\widehat{X_{h_{n}}^{\prime}}$ is the Berglund-Hübsch-Krawitz (BHK) mirror of $X^{\prime}$.

$$
X_{d}^{\prime} \stackrel{\text { mirror }}{\longleftrightarrow} \widehat{X_{h_{n}}^{\prime}}
$$

For $n \in \mathbb{Z}_{\geq 0}, h_{n}=\left(s_{n}-1\right)\left(2 s_{n}-3\right), d=2 s_{n}-2=2 s_{0} \cdots s_{n-1}$

- The hypersurface $X_{d}^{\prime} \subset \mathbb{P}\left(d / s_{0}, \ldots, d / s_{n-1}, 1,1\right)$ defined by $x_{0}^{2}+x_{1}^{3}+\cdots+x_{n-1}^{s_{n-1}}+x_{n}^{d-1} x_{n+1}+x_{n+1}^{d}=0$ is quasi-smooth of dimension $n$, canonical, and has $K_{X^{\prime}} \sim 0$;
- $\widehat{X_{h_{n}}^{\prime}}$ is the Berglund-Hübsch-Krawitz (BHK) mirror of $X^{\prime}$.

$$
X_{d}^{\prime} \stackrel{\text { mirror }}{\longleftrightarrow} \widehat{X_{h_{n}}^{\prime}}
$$

There is a easy combinatorial way to compute big cyclic group action on the hypersurface defined by a potential.

- $\mu_{h_{n}}$ acts $\mathbb{P}\left(d / s_{0}, \ldots, d / s_{n-1}, 1,1\right)$ by $\zeta\left[x_{0}: \cdots: x_{n+1}\right]=$

$$
\left[\zeta^{d /\left(2 s_{0}\right)} x_{0}: \zeta^{d /\left(2 s_{1}\right)} x_{1}: \cdots: \zeta^{d /\left(2 s_{n-1}\right)} x_{n-1}: x_{n}: \zeta^{d / 2} x_{n+1}\right]
$$

- $X^{\prime}$ is invariant under this action. The quotient of $X^{\prime}$ by $\mu_{h_{n}}$ gives a klt Calabi-Yau pair of large index $h_{n}$.

$$
h_{n}>2^{2^{n}} \stackrel{\text { mirror }}{\longleftrightarrow} \mathrm{vol}<1 / 2^{2^{n}}
$$

## Calabi-Yau pairs of large index (simplified description)

## Theorem (ETW 2022)

For an integer $n \geq 2$, let

- $X=\mathbb{P}^{n}\left(d^{(n-1)}, d-1,1\right)$ with $d=2 s_{n}-2$ and coordinates $y_{1}, \ldots, y_{n+1}$;
- divisor $D_{i}=\left\{y_{i}=0\right\}$ on $X$ for $1 \leq i \leq n$;


Then $(X, D)$ is a klt Calabi-Yau pair of dimension $n$ with standard coefficients of index $h_{n}=\left(s_{n}-1\right)\left(2 s_{n}-3\right)>2^{2^{n}}$

Conjecture: this is the example of largest index.
True for $\mathrm{dim}=2$.

## Calabi-Yau pairs of large index (simplified description)

## Theorem (ETW 2022)

For an integer $n \geq 2$, let

- $X=\mathbb{P}^{n}\left(d^{(n-1)}, d-1,1\right)$ with $d=2 s_{n}-2$ and coordinates $y_{1}, \ldots, y_{n+1}$;
- divisor $D_{i}=\left\{y_{i}=0\right\}$ on $X$ for $1 \leq i \leq n$;
- divisor $D_{0}=\left\{y_{1}+\cdots+y_{n-1}+y_{n} y_{n+1}+y_{n+1}^{d}=0\right\}$;
- $D=\frac{1}{2} D_{0}+\frac{2}{3} D_{1}+\cdots+\frac{s_{n-1}-1}{s_{n-1}} D_{n-1}+\frac{d-2}{d-1} D_{n}$.

Then $(X, D)$ is a klt Calabi-Yau pair of dimension $n$ with standard coefficients of index $h_{n}=\left(s_{n}-1\right)\left(2 s_{n}-3\right)>2^{2^{n}}$

Conjecture: this is the example of largest index.
True for $\mathrm{dim}=2$.

## Calabi-Yau pairs of large index (simplified description)

## Theorem (ETW 2022)

For an integer $n \geq 2$, let

- $X=\mathbb{P}^{n}\left(d^{(n-1)}, d-1,1\right)$ with $d=2 s_{n}-2$ and coordinates

$$
y_{1}, \ldots, y_{n+1}
$$

- divisor $D_{i}=\left\{y_{i}=0\right\}$ on $X$ for $1 \leq i \leq n$;
- divisor $D_{0}=\left\{y_{1}+\cdots+y_{n-1}+y_{n} y_{n+1}+y_{n+1}^{d}=0\right\}$;
- $D=\frac{1}{2} D_{0}+\frac{2}{3} D_{1}+\cdots+\frac{s_{n-1}-1}{s_{n-1}} D_{n-1}+\frac{d-2}{d-1} D_{n}$.

Then $(X, D)$ is a klt Calabi-Yau pair of dimension $n$ with standard coefficients of index $h_{n}=\left(s_{n}-1\right)\left(2 s_{n}-3\right)>2^{2^{n}}$.

Conjecture: this is the example of largest index.
True for $\operatorname{dim}=2$.

## Dimension 2

$$
(X, D)=\left(\mathbb{P}^{2}(12,11,1), \frac{1}{2} D_{0}+\frac{2}{3} D_{1}+\frac{10}{11} D_{2}\right) .
$$

## Dimension 2

$(X, D)=\left(\mathbb{P}^{2}(12,11,1), \frac{1}{2} D_{0}+\frac{2}{3} D_{1}+\frac{10}{11} D_{2}\right)$.
Index-1 cover:
$X_{12}^{\prime} \subset \mathbb{P}(6,4,1,1)$ given by $x_{0}^{2}+x_{1}^{3}+x_{2}^{11} x_{3}+x_{3}^{12}=0$ acted by $\mu_{66}$.

## Dimension 2

$$
(X, D)=\left(\mathbb{P}^{2}(12,11,1), \frac{1}{2} D_{0}+\frac{2}{3} D_{1}+\frac{10}{11} D_{2}\right) .
$$

Index-1 cover:
$X_{12}^{\prime} \subset \mathbb{P}(6,4,1,1)$ given by $x_{0}^{2}+x_{1}^{3}+x_{2}^{11} x_{3}+x_{3}^{12}=0$ acted by $\mu_{66}$.
$\widehat{X_{66}^{\prime}} \subset \mathbb{P}(33,22,6,5)$ given by $x_{0}^{2}+x_{1}^{3}+x_{2}^{11}+x_{2} x_{3}^{12}=0$

$$
X_{12}^{\prime} \stackrel{\text { mirror }}{\longleftrightarrow} \widehat{X_{66}^{\prime}}
$$

66 is conjecturally largest Fano index in dimension 3.

Proposition (Wang2023)
Among all canonical del Pezzo surfaces, the WPS $X=\mathbb{P}^{2}(3,2,1)$ has the largest Fano index 6.

Fano index of $\mathbb{P}^{2}(3,2,1)$ is $3+2+1=6$.

## Lemma (1)

Let $X$ be a smooth projective surface and $Y$ be the blow-up of $X$ at a point. Then $K_{Y}$ is always primitive, i.e., then there exists no element $A \in \operatorname{Pic}(Y)$ such that $K_{Y} \sim_{\mathbb{Q}} m A$ for some integer $m \geq 2$.

## Lemma (1)

Let $X$ be a smooth projective surface and $Y$ be the blow-up of $X$ at a point. Then $K_{Y}$ is always primitive, i.e., then there exists no element $A \in \operatorname{Pic}(Y)$ such that $K_{Y} \sim_{\mathbb{Q}} m A$ for some integer $m \geq 2$.

Proof: We have $K_{Y} \cdot E=-1$, where $E$ is the exceptional divisor of the blow up.

## Lemma (1)

Let $X$ be a smooth projective surface and $Y$ be the blow-up of $X$ at a point. Then $K_{Y}$ is always primitive, i.e., then there exists no element $A \in \operatorname{Pic}(Y)$ such that $K_{Y} \sim_{\mathbb{Q}} m A$ for some integer $m \geq 2$.

Proof: We have $K_{Y} \cdot E=-1$, where $E$ is the exceptional divisor of the blow up.
$K_{Y} \sim_{\mathbb{Q}} m A$ for some positive integer $m$ and $A \in \operatorname{Pic}(Y)$
$\Downarrow$
$m(A \cdot E)=-1$.

## Lemma (1)

Let $X$ be a smooth projective surface and $Y$ be the blow-up of $X$ at a point. Then $K_{Y}$ is always primitive, i.e., then there exists no element $A \in \operatorname{Pic}(Y)$ such that $K_{Y} \sim_{\mathbb{Q}} m A$ for some integer $m \geq 2$.

Proof: We have $K_{Y} \cdot E=-1$, where $E$ is the exceptional divisor of the blow up.
$K_{Y} \sim_{\mathbb{Q}} m A$ for some positive integer $m$ and $A \in \operatorname{Pic}(Y)$
$\Downarrow$
$m(A \cdot E)=-1$.
$Y$ is smooth $\Rightarrow A \cdot E$ is an integer $\Rightarrow m=1$.

## Lemma (2)

For a canonical del Pezzo surface $S$ with Picard number one, the Fano index $\mathrm{FI}(S) \leq 6$.

## Idea: Use classification of canonical (equivalent to Gorenstein

 in dimension 2) del Pezzo surfaces $S$ with Picard number one and canonical volume $\left(-K_{S}\right)^{2}$. (Mivanishi, Zhang)
## Lemma (2)

For a canonical del Pezzo surface $S$ with Picard number one, the Fano index $\mathrm{FI}(S) \leq 6$.

Idea: Use classification of canonical (equivalent to Gorenstein in dimension 2) del Pezzo surfaces $S$ with Picard number one, and canonical volume $\left(-K_{S}\right)^{2}$. (Miyanishi, Zhang)

## Sketchs:

- Assume that $-K_{S} \sim_{\mathbb{Q}} m A$ for some integer $m>0$ and $A \in \mathrm{Cl}(S)$.
- Similar analysis for each class.


## Sketchs:

- Assume that $-K_{S} \sim_{\mathbb{Q}} m A$ for some integer $m>0$ and $A \in \mathrm{Cl}(S)$.
- Similar analysis for each class.

When $S$ has singularity of $2 A_{1}+A_{3}$, we have $\left(-K_{S}\right)^{2}=4$ and $\mathrm{Cl}(S) / \operatorname{Pic}(S)=\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$.

Sketchs:

- Assume that $-K_{S} \sim_{\mathbb{Q}} m A$ for some integer $m>0$ and $A \in \mathrm{Cl}(S)$.
- Similar analysis for each class.

When $S$ has singularity of $2 A_{1}+A_{3}$, we have $\left(-K_{S}\right)^{2}=4$ and $\mathrm{Cl}(S) / \operatorname{Pic}(S)=\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$.
$\Rightarrow 4 A \in \operatorname{Pic}(S)$ and $\left(-K_{S}\right)^{2}=\frac{m^{2}}{4^{2}}(4 A)^{2}$.

Sketchs:

- Assume that $-K_{S} \sim_{\mathbb{Q}} m A$ for some integer $m>0$ and $A \in \mathrm{Cl}(S)$.
- Similar analysis for each class.

When $S$ has singularity of $2 A_{1}+A_{3}$, we have $\left(-K_{S}\right)^{2}=4$ and $\mathrm{Cl}(S) / \operatorname{Pic}(S)=\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$.
$\Rightarrow 4 A \in \operatorname{Pic}(S)$ and $\left(-K_{S}\right)^{2}=\frac{m^{2}}{4^{2}}(4 A)^{2}$.
$\Rightarrow m^{2}=\frac{4 \cdot 16}{(4 A)^{2}}$ and $(4 A)^{2} \in \mathbb{Z}$ since $4 A$ is Cartier.

Sketchs:

- Assume that $-K_{S} \sim_{\mathbb{Q}} m A$ for some integer $m>0$ and $A \in \mathrm{Cl}(S)$.
- Similar analysis for each class.

When $S$ has singularity of $2 A_{1}+A_{3}$, we have $\left(-K_{S}\right)^{2}=4$ and $\mathrm{Cl}(S) / \operatorname{Pic}(S)=\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$.
$\Rightarrow 4 A \in \operatorname{Pic}(S)$ and $\left(-K_{S}\right)^{2}=\frac{m^{2}}{4^{2}}(4 A)^{2}$.
$\Rightarrow m^{2}=\frac{4 \cdot 16}{(4 A)^{2}}$ and $(4 A)^{2} \in \mathbb{Z}$ since $4 A$ is Cartier.
$\Rightarrow m \leq 6$ or $m=8$.

- only need to show that $m$ cannot be 8 .

on smooth surfaces starting with $\mathbb{P}^{2}$
We aet Contradiction bv Lemma (1).
- only need to show that $m$ cannot be 8 . Let $p: Y \rightarrow S$ be the minimal resolution of $S$.
$\Rightarrow K_{Y}=p^{*} K_{S}$ and $p^{*}(4 A) \in \operatorname{Pic}(Y)$.
- only need to show that $m$ cannot be 8 . Let $p: Y \rightarrow S$ be the minimal resolution of $S$.
$\Rightarrow K_{Y}=p^{*} K_{S}$ and $p^{*}(4 A) \in \operatorname{Pic}(Y)$.
If $-K_{S} \sim_{\mathbb{Q}} 8 A$, then $-K_{Y} \sim_{\mathbb{Q}} 2 p^{*}(4 A)$.
Note that $Y$ can be obtained by several blows up of points on smooth surfaces starting with $\mathbb{P}^{2}$.
We get Contradiction by Lemma (1).
- only need to show that $m$ cannot be 8 . Let $p: Y \rightarrow S$ be the minimal resolution of $S$.
$\Rightarrow K_{Y}=p^{*} K_{S}$ and $p^{*}(4 A) \in \operatorname{Pic}(Y)$.
If $-K_{S} \sim_{\mathbb{Q}} 8 A$, then $-K_{Y} \sim_{\mathbb{Q}} 2 p^{*}(4 A)$.
Note that $Y$ can be obtained by several blows up of points on smooth surfaces starting with $\mathbb{P}^{2}$. We get Contradiction by Lemma (1).
- Similar arguments if $S$ has other singularity.

For a canonical del Pezzo surfaces $Z$, the Fano index $\mathrm{FI}(Z) \leq 6$.

Sketch of proof


For a canonical del Pezzo surfaces $Z$, the Fano index $\mathrm{FI}(Z) \leq 6$.

Sketch of proof:

- there is a contraction $\pi: Z \rightarrow S$, where $S$ is a canonical del Pezzo surfaces with Picard rank one or two (Miyanishi, Zhang).

For a canonical del Pezzo surfaces $Z$, the Fano index $\mathrm{FI}(Z) \leq 6$.

Sketch of proof:

- there is a contraction $\pi: Z \rightarrow S$, where $S$ is a canonical del Pezzo surfaces with Picard rank one or two (Miyanishi, Zhang).
- $K_{Z}=\pi^{*}\left(K_{S}\right)+E$, where $E$ is a linear combination of exceptional divisors with integer coefficients $\Rightarrow \pi_{*}\left(K_{Z}\right)=K_{S}$.

For a canonical del Pezzo surfaces $Z$, the Fano index $\mathrm{FI}(Z) \leq 6$.

Sketch of proof:

- there is a contraction $\pi: Z \rightarrow S$, where $S$ is a canonical del Pezzo surfaces with Picard rank one or two (Miyanishi, Zhang).
- $K_{Z}=\pi^{*}\left(K_{S}\right)+E$, where $E$ is a linear combination of exceptional divisors with integer coefficients $\Rightarrow \pi_{*}\left(K_{Z}\right)=K_{S}$.
- $\mathrm{FI}(Z)>6$
$\Rightarrow-K_{z} \sim_{\mathbb{Q}} m A$ for some $A \in \mathrm{Cl}(Z)$ and $m>6$
$\Rightarrow-K_{S} \sim_{\mathbb{Q}} m \pi_{*}(A)$ with $\pi_{*}(A) \in \mathrm{Cl}(S)$
$\Rightarrow \mathrm{FI}(S)>6$.

By Lemma (2), we only need to show $\mathrm{FI}(S) \leq 6$ if $S$ has Picard rank two.

By Lemma (2), we only need to show $\mathrm{FI}(S) \leq 6$ if $S$ has Picard rank two. We use the following results:

- $\left(K_{S}\right)^{2} \leq 9$. (Miyanishi, Zhang)

By Lemma (2), we only need to show $\mathrm{FI}(S) \leq 6$ if $S$ has Picard rank two. We use the following results:

- $\left(K_{S}\right)^{2} \leq$ 9. (Miyanishi, Zhang)
- if $S$ is not smooth $\mathbb{P}^{1} \times \mathbb{P}^{1}$, all the possible singularity types that $S$ could have are given by Miyanishi and Zhang as follows: $6 A_{1}, 4 A_{1}+A_{3}, 4 A_{1}, 2 A_{1}+D_{4}, 2 A_{1}+D_{5}, 2 A_{3}$, $A_{3}+D_{4}, D_{4}, D_{6}, D_{7}$.

By Lemma (2), we only need to show $\mathrm{FI}(S) \leq 6$ if $S$ has Picard rank two. We use the following results:

- $\left(K_{S}\right)^{2} \leq 9$. (Miyanishi, Zhang)
- if $S$ is not smooth $\mathbb{P}^{1} \times \mathbb{P}^{1}$, all the possible singularity types that $S$ could have are given by Miyanishi and Zhang as follows: $6 A_{1}, 4 A_{1}+A_{3}, 4 A_{1}, 2 A_{1}+D_{4}, 2 A_{1}+D_{5}, 2 A_{3}$, $A_{3}+D_{4}, D_{4}, D_{6}, D_{7}$.
- Note the local class group of $A_{n}, D_{n}\left(n\right.$ even) and $D_{n}(n$ odd) are $\mathbb{Z} /(n+1) \mathbb{Z}, \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ and $\mathbb{Z} / 4 \mathbb{Z}$ respectively (Lipman1969).

By Lemma (2), we only need to show $\mathrm{FI}(S) \leq 6$ if $S$ has Picard rank two. We use the following results:

- $\left(K_{S}\right)^{2} \leq$ 9. (Miyanishi, Zhang)
- if $S$ is not smooth $\mathbb{P}^{1} \times \mathbb{P}^{1}$, all the possible singularity types that $S$ could have are given by Miyanishi and Zhang as follows: $6 A_{1}, 4 A_{1}+A_{3}, 4 A_{1}, 2 A_{1}+D_{4}, 2 A_{1}+D_{5}, 2 A_{3}$, $A_{3}+D_{4}, D_{4}, D_{6}, D_{7}$.
- Note the local class group of $A_{n}, D_{n}\left(n\right.$ even) and $D_{n}(n$ odd) are $\mathbb{Z} /(n+1) \mathbb{Z}, \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ and $\mathbb{Z} / 4 \mathbb{Z}$ respectively (Lipman1969).
Similar arguments as the case of Picard number one: assume $-K_{S} \sim_{\mathbb{Q}} m A$ for some integer $m>0$ and $A \in \mathrm{Cl}(S)$, we show $m \leq 6$.


## Terminal singularities

## Lower dimensions

- $n=3, X=\mathbb{P}^{3}(7,5,3,2)$ has Fano index 17. It is the second largest Fano index for all $\mathbb{Q}$-Fano threefolds. $\operatorname{FI}\left(\mathbb{P}^{3}(7,5,4,3)\right)=19$ (Prokhorov).


## Terminal singularities

## Lower dimensions

- $n=3, X=\mathbb{P}^{3}(7,5,3,2)$ has Fano index 17. It is the second largest Fano index for all $\mathbb{Q}$-Fano threefolds. $\mathrm{FI}\left(\mathbb{P}^{3}(7,5,4,3)\right)=19$ (Prokhorov).
- $n=4, X=\mathbb{P}^{4}(430,287,123,21,20)$ has Fano index 881. It is the largest Fano index among all well-formed WPS with terminal singularities in dimension 4 (Brown, Kasprzyk)


## generalize to higher dimensions

## Theorem (Wang2023)

For each integer $n \geq 3$, let

- $a_{0}=\frac{1}{2}\left(s_{n-1}-1\right)-1$, - $a_{1}=\frac{1}{2}\left(s_{n-1}-1\right)$, $a_{i}=\frac{1}{2}\left(s_{n-1}-1\right) \frac{s_{n-1}-2}{s_{n-i}}$ for $2 \leq i \leq n-1$, $\left.-a_{n}=\frac{1}{2}\left(\frac{1}{2}\left(s_{n-1}-1\right)\left(s_{n-1}-2\right)-1\right)\right)$,
Then $X=\mathbb{P}^{n}\left(a_{n}, \ldots, a_{0}\right)$ is well-formed with terminal
singularities and with Fano index $\frac{1}{2}\left(s_{n-1}-1\right)^{2}-1$. In particular, $\mathrm{FI}(X)>2^{2^{n}}$


## generalize to higher dimensions

## Theorem (Wang2023)

For each integer $n \geq 3$, let

- $a_{0}=\frac{1}{2}\left(s_{n-1}-1\right)-1$,
- $a_{1}=\frac{1}{2}\left(s_{n-1}-1\right)$,
- $a_{i}=\frac{1}{2}\left(s_{n-1}-1\right) \frac{s_{n-1}-2}{s_{n-i}}$ for $2 \leq i \leq n-1$
- $\left.a_{n}=\frac{1}{2}\left(\frac{1}{2}\left(s_{n-1}-1\right)\left(s_{n-1}-2\right)-1\right)\right)$,

Then $X=\mathbb{P}^{n}\left(a_{n}, \ldots, a_{0}\right)$ is well-formed with terminal
singularities and with Fano index $\frac{1}{2}\left(s_{n-1}-1\right)^{2}-1$. In particular, $\mathrm{FI}(X)>2^{2^{n}}$

## generalize to higher dimensions

## Theorem (Wang2023)

For each integer $n \geq 3$, let

- $a_{0}=\frac{1}{2}\left(s_{n-1}-1\right)-1$,
- $a_{1}=\frac{1}{2}\left(s_{n-1}-1\right)$,
- $a_{i}=\frac{1}{2}\left(s_{n-1}-1\right) \frac{s_{n-1}-2}{s_{n-i}}$ for $2 \leq i \leq n-1$,

$$
\text { - } \left.a_{n}=\frac{1}{2}\left(\frac{1}{2}\left(s_{n-1}-1\right)\left(s_{n-1}-2\right)-1\right)\right) \text {, }
$$

Then $X=\mathbb{P}^{n}\left(a_{n}, \ldots, a_{0}\right)$ is well-formed with terminal
singularities and with Fano index $\frac{1}{2}\left(s_{n-1}-1\right)^{2}-1$. In particular, $\mathrm{FI}(X)>2^{2 n}$

## generalize to higher dimensions

## Theorem (Wang2023)

For each integer $n \geq 3$, let

- $a_{0}=\frac{1}{2}\left(s_{n-1}-1\right)-1$,
- $a_{1}=\frac{1}{2}\left(s_{n-1}-1\right)$,
- $a_{i}=\frac{1}{2}\left(s_{n-1}-1\right) \frac{s_{n-1}-2}{s_{n-i}}$ for $2 \leq i \leq n-1$,
- $\left.a_{n}=\frac{1}{2}\left(\frac{1}{2}\left(s_{n-1}-1\right)\left(s_{n-1}-2\right)-1\right)\right)$,

Then $X=\mathbb{P}^{n}\left(a_{n}, \ldots, a_{0}\right)$ is well-formed with terminal
singularities and with Fano index $\frac{1}{2}\left(s_{n-1}-1\right)^{2}-1$. In particular, $\mathrm{FI}(X)>2^{2^{n}}$

## generalize to higher dimensions

## Theorem (Wang2023)

For each integer $n \geq 3$, let

- $a_{0}=\frac{1}{2}\left(s_{n-1}-1\right)-1$,
- $a_{1}=\frac{1}{2}\left(s_{n-1}-1\right)$,
- $a_{i}=\frac{1}{2}\left(s_{n-1}-1\right) \frac{s_{n-1}-2}{s_{n-i}}$ for $2 \leq i \leq n-1$,
- $\left.a_{n}=\frac{1}{2}\left(\frac{1}{2}\left(s_{n-1}-1\right)\left(s_{n-1}-2\right)-1\right)\right)$,

Then $X=\mathbb{P}^{n}\left(a_{n}, \ldots, a_{0}\right)$ is well-formed with terminal singularities and with Fano index $\frac{1}{2}\left(s_{n-1}-1\right)^{2}-1$. In particular, $\mathrm{FI}(X)>2^{2^{n-1}}$.

- $n=3, X=\mathbb{P}^{3}(7,5,3,2), \operatorname{FI}(X)=17$,

Conjecture: this is the example of the largest possible Fano index among all Fano $n$-folds $(n \geq 4)$ with terminal singularities.

- $n=3, X=\mathbb{P}^{3}(7,5,3,2), \operatorname{FI}(X)=17$,
- $n=4, X=\mathbb{P}^{4}(430,287,123,21,20), \mathrm{FI}(X)=881$.

Conjecture: this is the example of the largest possible Fano index among all Fano $n$-folds ( $n \geq 4$ ) with terminal singularities.

## Gorenstein

## Theorem

For each integer $n \geq 1$, let $h=s_{n}-1$.
Then $X=\mathbb{P}^{n}\left(h / s_{0}, \ldots, h / s_{n-1}, 1\right)$ is well-formed with
Gorenstein canonical singularities and with Fano index $h$.
Nill gives this WPS and show it has largest Fano index among all well-formed WPS of dimension $n$ with Gorenstein canonical singularities.

## Gorenstein

## Theorem

For each integer $n \geq 1$, let $h=s_{n}-1$.
Then $X=\mathbb{P}^{n}\left(h / s_{0}, \ldots, h / s_{n-1}, 1\right)$ is well-formed with
Gorenstein canonical singularities and with Fano index $h$.
Nill gives this WPS and show it has largest Fano index among all well-formed WPS of dimension $n$ with Gorenstein canonical singularities.
Conjecture.

WPS $X=\mathbb{P}^{N}\left(a_{0}, \ldots, a_{N}\right)$ is a toric variety. In order to show $X$ is canonical (or terminal), it is enough to check that each coordinate point $[0: \cdots: 0: 1: 0: \cdots: 0]$ is canonical (or terminal).

- the torus $T=\left(\mathbb{G}_{m}\right)^{N+1} / \mathbb{G}_{m} \cong\left(\mathbb{G}_{m}\right)^{N}$ acts on $X$ by scaling the variables,
- The locus where $X$ is canonical (or terminal) is open and $T$-invariant. Thus if $X$ is canonical (or terminal) at a point $q$, then $X$ is also canonical (or terminal) at all points $p$ such that $q$ is in the closure of the $T$-orbit of $p$.

There are two tricks originated from Reid-Tai criterion to check a quotient singularitiy is canonical or terminal.
Let $\frac{1}{r}\left(b_{1}, \ldots, b_{s}\right)$ be a well-formed quotient singularity

## Lemma (ETW2021)

If some nonempty subset $I \subset\left\{b_{1}, \ldots, b_{s}\right\}$ has sum congruent to $0 \bmod r$ and $\operatorname{gcd}(I \cup\{r\})=1$, then the singularity is canonical.


If there is some subset $I \subset\{1$ multiple of $r, \operatorname{gcd}\left(\left\{b_{k} \mid k \in I\right\} \cup\{r\}\right)=1$ and $\operatorname{gcd}\left(b_{i}, r\right)=1$ for some $i \in\{1, \ldots, s\} \backslash I$, then the singularity is terminal.

There are two tricks originated from Reid-Tai criterion to check a quotient singularitiy is canonical or terminal.
Let $\frac{1}{r}\left(b_{1}, \ldots, b_{s}\right)$ be a well-formed quotient singularity

## Lemma (ETW2021)

If some nonempty subset $I \subset\left\{b_{1}, \ldots, b_{s}\right\}$ has sum congruent to $0 \bmod r$ and $\operatorname{gcd}(I \cup\{r\})=1$, then the singularity is canonical.

## Lemma (W2023)

If there is some subset $I \subset\{1, \ldots, s\}$ such that $\sum_{k \in I} b_{k}$ is a multiple of $r, \operatorname{gcd}\left(\left\{b_{k} \mid k \in I\right\} \cup\{r\}\right)=1$ and $\operatorname{gcd}\left(b_{i}, r\right)=1$ for some $i \in\{1, \ldots, s\} \backslash I$, then the singularity is terminal.

Let $X$ be a Fano variety of dimension $n$. Define:

$$
\operatorname{vol}(X):=\lim _{\ell \rightarrow \infty} h^{0}\left(X,-\ell K_{X}\right) /\left(\ell^{n} / n!\right)
$$

which measures the asymptotic growth of the anti-plurigenera $h^{0}\left(X,-\ell K_{X}\right)$.

Let $X$ be a Fano variety of dimension $n$. Define:

$$
\operatorname{vol}(X):=\lim _{\ell \rightarrow \infty} h^{0}\left(X,-\ell K_{X}\right) /\left(\ell^{n} / n!\right)
$$

which measures the asymptotic growth of the anti-plurigenera $h^{0}\left(X,-\ell K_{X}\right)$.
$\operatorname{vol}(X)=\left(-K_{X}\right)^{n}$ for Fano varieties.

- Among all $n$-dimensional canonical toric Fano varieties for $n \geq 4$, $\mathbb{P}^{n}\left(1,1,2\left(s_{n}-1\right) / s_{n-1}, \ldots, 2\left(s_{n}-1\right) / s_{1}\right)$ has the largest volume $2\left(s_{n}-1\right)^{2}$. (Balletti, Kasprzyk, and Nill)
- Among all $n$-dimensional canonical toric Fano varieties for $n \geq 4$, $\mathbb{P}^{n}\left(1,1,2\left(s_{n}-1\right) / s_{n-1}, \ldots, 2\left(s_{n}-1\right) / s_{1}\right)$ has the largest volume $2\left(s_{n}-1\right)^{2}$. (Balletti, Kasprzyk, and Nill)
- (Kasprzyk) $\mathbb{P}^{n}\left(1,1,\left(s_{n-1}-1\right) / s_{n-2}, \ldots,\left(s_{n-1}-1\right) / s_{0}\right)$ is terminal and has very large volume $\frac{s_{n-1}^{n}}{\left(s_{n-1}-1\right)^{n-2}}$. conjecture: Largest among the terminal Fano varieties of dimension $n$.


## Gorenstein terminal

(Kasprzyk)
Odd dimensions:

- $\mathbb{P}^{5}(4,3,2,1,1,1)$, volume 10368 ,
- $\mathbb{P}^{7}(28,21,14,12,6,1,1,1)$, volume 49787136 ,
- $\mathbb{P}^{9}(1204,903,602,516,258,84,42,1,1,1)$ volume 340424620687872.

They are the largest volume among all Gorenstin terminal WPS in dimension $n=5,7,9$.

## generalize to higher dimensions

For each odd integer $n=2 k+1 \geq 5$, where integer $k \geq 2$, let

- $h=2 s_{0} s_{1} \cdots s_{k-1}=2\left(s_{k}-1\right)$,
- $a_{0}=a_{1}=a_{2}=1$,


## generalize to higher dimensions

For each odd integer $n=2 k+1 \geq 5$, where integer $k \geq 2$, let

- $h=2 s_{0} s_{1} \cdots s_{k-1}=2\left(s_{k}-1\right)$,
- $a_{0}=a_{1}=a_{2}=1$,
- $a_{2 i-1}=\frac{h}{2 s_{k+1-i}}=s_{0} s_{1} \cdots \widehat{s_{k+1-i}} \cdots s_{k-1}$ for $2 \leq i \leq k-1$ when $k \geq 3$,


## generalize to higher dimensions

For each odd integer $n=2 k+1 \geq 5$, where integer $k \geq 2$, let

- $h=2 s_{0} s_{1} \cdots s_{k-1}=2\left(s_{k}-1\right)$,
- $a_{0}=a_{1}=a_{2}=1$,
- $a_{2 i-1}=\frac{h}{2 s_{k+1-i}}=s_{0} s_{1} \cdots \widehat{s_{k+1-i}} \cdots s_{k-1}$ for $2 \leq i \leq k-1$ when $k \geq 3$,
- $a_{2 i}=\frac{h}{s_{k+1-i}}=2 s_{0} s_{1} \cdots \widehat{s_{k+1-i}} \cdots s_{k-1}$ for $2 \leq i \leq k-1$ when $k \geq 3$,


## generalize to higher dimensions

For each odd integer $n=2 k+1 \geq 5$, where integer $k \geq 2$, let

- $h=2 s_{0} s_{1} \cdots s_{k-1}=2\left(s_{k}-1\right)$,
- $a_{0}=a_{1}=a_{2}=1$,
- $a_{2 i-1}=\frac{h}{2 s_{k+1-i}}=s_{0} s_{1} \cdots \widehat{s_{k+1-i}} \cdots s_{k-1}$ for $2 \leq i \leq k-1$ when $k \geq 3$,
- $a_{2 i}=\frac{h}{s_{k+1-i}}=2 s_{0} s_{1} \cdots \widehat{s_{k+1-i}} \cdots s_{k-1}$ for $2 \leq i \leq k-1$ when $k \geq 3$,
- $a_{n-2}=h / 6=s_{0} s_{2} \cdots s_{k-1}$,
- $a_{n-1}=h / 4=s_{1} s_{2} \cdots s_{k-1}$,
- $a_{n}=h / 3=2 s_{0} s_{2} \cdots s_{k-1}$.


## Theorem (Wang2023)

Then Gorenstein terminal WPS $X=\mathbb{P}^{n}\left(a_{n}, \ldots, a_{0}\right)$ has volume $\left(-K_{X}\right)^{n}=2^{\frac{n+1}{2}}\left(s_{\frac{n-1}{2}}-1\right)^{4}$.

## Theorem (Wang2023)

Then Gorenstein terminal WPS $X=\mathbb{P}^{n}\left(a_{n}, \ldots, a_{0}\right)$ has volume $\left(-K_{X}\right)^{n}=2^{\frac{n+1}{2}}\left(s_{\frac{n-1}{2}}-1\right)^{4}$.

Conjecture: it has the largest volume among all Fano $n$-folds ( $n \geq 5$ odd) with Gorenstein terminal singularities.

## Thank you!

